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ABSTRACT: This paper examined the petroleum futures volatility comovements and spillovers for 
crude oil, gasoline, heat oil and natural gas. The results of volatility analysis were used to calculate the 
optimal two-petroleum portfolio weights and hedging ratios. The data used in this study was the daily 
data from 2009 to 2014. The three Multivariate GARCH models, namely the VAR (1)-diagonal 
VECH, the VAR (1)-diagonal BEKK and the VAR (1)-CCC, were employed. The empirical results 
overall showed that the estimates of the multivariate GARCH parameters were statistically significant 
in almost all cases except in the case of RGASOLINE with RNG. This indicates that the short run 
persistence of shocks on the dynamic conditional correlations was greatest for RCRUDE with 
RHEATOIL, while the largest long run persistence of shocks to the conditional correlations for 
RCRUDE with RGASOLINE. Finally, the results from these optimal portfolio weights base on the 
VAR (1)-diagonal VECH estimates suggested that investors should had more heat oil than crude oil 
and other petroleum in their portfolio to minimize risk without lowering the expected return. 
 
Keywords: The petroleum futures volatility; comovements and spillovers; multivariate GARCH 
models; optimal portfolio weights; hedging ratios 
JEL Classifications: C13; C32; G13 
 
 
1. Introduction 

All countries consume petroleum. Both producers and consumers are highly concerned about 
petroleum prices. The petroleum prices are being directly affected by several economic, political, 
geopolitical, technological factors, and also oil reserves, available stocks and weather conditions, 
among others. On other hand the petroleum price fluctuations influence directly the world economy. 
Compared to financial assets petroleum prices have had an elevated volatility in recent years. 
Therefore, studies of petroleum price movements and co-movements are highly complex. Therefore 
the academics and practitioners are developing many studies about themes related with petroleum 
prices.  Economic agents indirectly involved in petroleum negotiations, such as firm or government 
planners, are looking for related petroleum price forecasting models, elaborating studies, while the 
agents directly involved are looking for the hedge strategies studies as well. The hedge strategies allow 
negotiators that have short and long positions in the market protection against price fluctuations.  

The motivation of this work is the relevance of petroleum international market growth, the 
biggest market among the commodity markets. This led to a development of derivative markets of this 
commodity, in particular, future contract markets, or simply future markets. This development brought 
sophisticated strategies. Among these strategies there are many for risk reduction of physical 
positions, investments in petroleum or others related to this commodity movements.   

Futures contracts are firm commitments to make or accept delivery of a specified quantity and 
quality of a commodity during a specific month in the future at a price agreed upon at the time the 
commitment is made. The buyer, known as the long, agrees to take delivery of the underlying 
commodity. The seller, known as the short, agrees to make delivery. Only a small number of contracts 
traded each year result in delivery of the underlying commodity. Instead, traders generally offset (a 
buyer will liquidate by selling the contract, the seller will liquidate by buying back the contract) their 
futures positions before their contracts mature. The difference between the initial purchase or sale 
price and the price of the offsetting transaction represents the realized profit or loss. 
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Futures contracts trade in standardized units in a highly visible, extremely competitive, 
continuous open auction. In this way, futures lend themselves to widely diverse participation and 
efficient price discovery, giving an accurate picture of the market.  

To do this effectively, the underlying market must meet three broad criteria: The prices of the 
underlying commodities must be volatile, there must be a diverse, large number of buyers and sellers, 
and the underlying physical products must be fungible, that is, products are interchangeable for 
purposes of shipment or storage. All market participants must work with a common denominator. 
Each understands that futures prices are quoted for products with precise specifications delivered to a 
specified point during a specified period of time. 
 In this research, we are interested in petroleum four types include crude oil, gasoline, heat oil 
and natural gas. These are of interest to investors. The investment is more interesting for petroleum 
futures. We can explain more in the next section, which is related to the literature reviews, research 
methodology and empirical results. 

The purpose is to analyze the petroleum future volatility comovements and spillovers among 
major petroleum including crude oil (WTI market), gasoline, heat oil and natural gas by using 
multivariate GARCH, namely the diagonal VECH, the diagonal BEKK and CCC model and choose 
the best way for such analysis. In addition, continue to manage in hedging strategies. 

 
2. Literature Review 

The previous studies on petroleum markets centers mainly on the issues such as price 
discovery and market interrelationships. For example, many studies investigate the issue of price 
discovery, efficiency and causal relationship between oil spot and futures prices; Crowder and Hamed 
(1993), Moosa and Al-Loughani (1995), Peroni and McNown (1998) and Silvapulle and Moosa 
(1999). A number of studies also investigate linkages both in conditional return and variances between 
spot and futures of crude oil markets in different geographical locations; Ewing and Harter (2000), Lin 
and Tamvakis (2001), Lanza et al. (2006), Manera et al. (2006), Chang et al. (2009a, 2009b).   

It has not been widely acknowledged in the literature that risk in the oil market can be 
minimized through futures hedging. Knill et al. (2006) suggest that if an oil and gas company uses 
futures contracts to hedge risk, they hedge only the downside risk. On the while, Daniel (2001) shows 
that hedging strategies can substantially reduce oil price volatility without significantly reducing 
returns, and with the added benefit of greater predictability and certainty. Haigh and Holt (2002) 
specify the time-varying hedge ratio of BEKK model of Engle and Kroner (1995) for crude oil (WTI), 
heating oil and unleaded gasoline futures contracts to examine volatility spillovers. Using the VECM 
and BEKK models, Alizadeh et al. (2004) examine the effectiveness of hedging marine bunker price 
fluctuations in Rotterdam, Singapore and Houston using different crude oil and petroleum futures 
contracts traded on the New York Mercantile Exchange (NYMEX) and the International Petroleum 
Exchange (IPE) in London. Jalali-Naini and Kazemi-Manesh (2006) find that the OHRs are time 
varying for all contracts, and higher duration contracts had higher perceived risk, a higher OHR mean, 
and standard deviations using weekly spot prices of WTI and futures prices of crude oil contracts one 
month to four months on NYMEX.   

In order to estimate time varying optimal hedge ratios, two distinct approaches have been 
developing. One approach is basically to follow a Markov regime-switching model, which is firstly 
used for estimating optimal hedge ratios by Alizadeh and Nomikos (2004). Lee et al. (2006) and Lee 
and Yoder (2007a,b) propose various forms of Markov regime-switching models with allowing the 
hedge ratio to be both time varying and state-dependent, and find that all of these models outperform 
state-independent GARCH models.  

The other approach is to estimate time varying optimal hedge ratios by using mixed normal 
GARCH models. In fact, finite mixing two or more conditionally normal and heteroskedastic 
components exhibit quite complex dynamics, as often observed in financial markets. For example, 
there may be components provided by nonstationary dynamics, another is not, but the overall mixing 
process might be a covariance stationary. This implies that markets are stable most of the time, but, 
occasionally, subject to severe and temporal fluctuations. In this regards, Alexander and Lazar (2004, 
2005, 2006), and Haas et al. (2002, 2004) recently proposed family of univariate mixed normal 
GARCH processes, which has been shown to be particularly well suited for analyzing and forecasting 
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financial volatility. However, estimating time varying optimal hedge ratios is inherently multivariate 
and Haas et al. (2006) and Bauween et al. (2006) thus generalize the univariate mixed normal GARCH 
model to the multivariate specification. As a consequence, the hedge ratios estimated from mixed 
normal GARCH models are both time varying and asymmetric.  

Finally, Moschini and Myers (2002) develop a different bivariate GARCH parameterization 
for cash and futures markets, with a flexible functional form for time-varying volatility that is suitable 
for testing whether the optimal hedge ratio is constant, and whether the time variations in the optimal 
hedge ratios are due solely to deterministic seasonality and time-to-maturity effects. Statistical tests 
reject both null hypotheses.  

However, this study we use the popular multivariate GARCH include the diagonal VECH, the 
diagonal BEKK and the CCC model as detailed below. 
 
3. Research Methodology 
Multivariate GARCH Models 
 The basic idea to extend univariate GARCH models to multivariate GARCH models is that it 
is significant to predict the dependence in the comovement of the petroleum future returns in a 
portfolio. To recognize this feature through a multivariate model would generate a more reliable 
model than separate univariate models. 
 In the first place, one should consider what specification of a multivariate GARCH model 
should be imposed. On the one hand, it should be flexible enough to state the dynamics of the 
conditional variances and covariances. On the other hand, as the number of parameters in a 
multivariate GARCH model increase rapidly along with the dimension of the model, the specification 
should be parsimonious to simplify the model estimation and also reach the purpose of easy 
interpretation of the model parameters. However, parsimony may reduce the number of parameters, in 
which situation the relevant dynamics in the covariance matrix cannot be captured. So it is important 
to get balance between the parsimony and the flexibility when designing the multivariate GARCH 
model specification. Another feature that multivariate GARCH models must satisfy is that the 
covariance matrix should be positive definite. 
 Several different multivariate GARCH model formulations have been proposed in the 
literature, and the most popular of these are the diagonal VECH, the diagonal BEKK and CCC 
models. Each of these is discussed briefly in turn below; for a more detailed discussion, see Kroner 
and Ng (1998). 
The diagonal VECH model 
 The first multivariate GARCH model was introduced by Bollerslev, Engle and Wooldridge in 
1988, which is called VECH model. It is much general compared to the subsequent formulations. In 
the VECH model, every conditional variance and covariance is a function of all lagged conditional 
variances and covariances, as well as lagged squared returns and cross-products of returns. The model 
can be expressed below: 
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 The diagonal VECH model, the restricted version of VECH, was also proposed by Bollerslev, 
et al (1988). It assumes the jA  and jB in equation (1) are diagonal matrices, which makes it possible 

for tH to be positive definite for all t . Also, the estimation process proceeds much smoothly compared 
to the complete VECH model. However, the diagonal VECH model with 

2
)1()1( 


NNqp parameters is too restrictive since it does not take into account the 

interaction between different conditional variances and covariances. 
The diagonal BEKK model 
 To ensure positive definiteness, a new parameterization of the conditional variance matrix tH  
was defined by Baba, Engle, Kraft and Kroner (1990) and became known as the BEKK model, which 
is viewed as another restricted version of the VECH model. It achieves the positive definiteness of the 
conditional variance by formulating the model in a way that is property is implied by model structure. 

The form of the BEKK model is as follows 
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where kjkj BA , and C are NN  parameter matrices, and C is a lower triangular matrix. The purpose 
of decomposing the constant term into a product of two triangle matrices is to guarantee the positive 
semi-definiteness of tH . Whenever 1K , an identification problem would be generated for the 
reason that there are not only single parameterizations that can obtain the same representation of the 
model. 
 The first order BEKK model is 

                                            BHBAACCH tttt 111                                                       (3) 
 The BEKK model also has its diagonal form by assuming kjkj BA , matrices are diagonal. It is 
a restricted version of the diagonal VECH model. The most restricted version of the diagonal BEKK 
model is the scalar BEKK one with aIA  and bIB  where a  and b are scalars. 

Estimation of a BEKK model still bears large computations due to several matrix 

transpositions. The number of parameters of the complete BEKK model is
2

)1()( 2 
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NNKNqp . 

Even in the diagonal one, the number of parameters soon reduces to
2

)1()( 
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NNKNqp , but it is 

still large. The BEKK form is not linear in parameters, which makes the convergence of the model 
difficult.  However, the strong point lies in that the model structure automatically guarantees the 
positive definiteness of tH . Under the overall consideration, it is typically assumed that 

1 Kqp in BEKK form’s application. 
The Constant Conditional Correlations (CCC) model 

The CCC model was introduced by Bollerslev in 1990 to primarily model the condition 
covariance matrix indirectly by estimating the conditional correlation matrix. The conditional 
correlation is assumed to be constant while the conditional variances are varying.  

Consider the CCC model of Bollerslev (1990): 
                                  ttttttt DFyEy    ,1                                               (4)     
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where     mtttmttt yyy  ,...,1,...,1 , is a sequence of independently and identically distributed 

(i.i.d) random vectors, tF  is the past information available at time   mhhdiagDt mtt ,,...,, 2/12/1  is 
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the number of returns, and ,,...,1 nt  . As   ,1 ttttt EFE    where  ij   for 

,,...1, mji  the constant conditional correlation matrix of the unconditional shocks, t , is equivalent 
to the constant conditional covariance matrix of the conditional shocks, t , from (4), 

  ,, 2/1
1 tttttttt QdiagDDD    and  ,11 tttttt DDQFE    where tQ  is the 

conditional covariance matrix. 
 The CCC model assumes that the conditional variance for each return ,,...,1, mihit  follows 
a univariate GARCH process, that is 
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 denotes the long run persistence.  

Model estimation for multivariate GARCH 
 Under the assumption of conditional normality, the parameters of the multivariate GARCH 
models of any of the above specifications can be estimated by maximizing the log-likelihood function. 
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where   denotes all the unknown parameters to be estimated, N is the number of the petroleum 
future prices and T is the number of observations and all other notation is as above. The maximum-
likelihood estimates for   is asymptotically normal, and thus traditional procedures for statistical 
inference are applicable. 
 
4. Data   
 The data used in this study is the daily data from 4 November 2009 to 29 October 2014. We 
will get 1251 observations. The data is derived from www.quandl.com and trade in CME (Chicago 
Mercantile Exchange) market. Moreover, data analysis can be carried out using EVIEWS 8. The four 
petroleum future return is defined as: 

                                                     
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where tFP  is the petroleum future price at time t  and 1tFP is the petroleum future price at time 

1t .The tR  of equation (7) will be used in observing the volatility of the petroleum between the 
selected petroleum over the period 2009 to 2014.  We can create the variables of the return on the 
petroleum futures as follows: 

The returns of crude oil future = RCRUDE, the returns of gasoline future = RGASOLINE, the 
returns of heat oil future = RHEATOIL and the returns of natural gas future = RNG 

In addition, we can show the movement of the daily four petroleum future prices and returns 
according to Figure 1 and Figure 2. 
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Figure 1. the daily four petroleum future prices 
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Figure 2. the daily four petroleum future returns 
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The descriptive statistics are given in Table 1. The daily future returns of natural gas (RNG) 
display the greatest variability with the mean of -0.000221%, a maximum of 0.1699%, and a minimum 
of -0.1491%. Furthermore, the skewness, the kurtosis and the Jarque-Bera Lagrange multiplier 
statistics of all petroleum future returns are statistically significant, thereby implying that the 
distribution is not normal. Besides, the return series will be used to construct the conditional mean and 
the conditional variances in next. 

Table 1. Descriptive Statistics 
Returns RCRUDE RGASOLINE RHEATOIL RNG 

Mean 4.06E-05 7.85E-05 0.000171 -0.000221 
Median 0.000299 7.54E-05 0.000230 -0.000760 
Maximum 0.0894 0.0968 0.0549 0.1699 
Minimum -0.0903 -0.1349 -0.0865 -0.1491 
Std. Dev. 0.0164 0.0182 0.0142 0.0279 
Skewness -0.1510 -0.4351 -0.3430 0.4722 
Kurtosis 5.6766 8.3840 5.7790 6.6720 
Jarque-Bera 378.5033 1551.6920 427.4340 749.9592 

 
5. Empirical Results 
5.1 Unit Root Tests 
 Standard econometric practice in the analysis of financial time series data begins with an 
examination of unit roots. The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests are 
used to test for all the petroleum future returns under the null hypothesis of a unit root against the 
alternative hypothesis of stationarity. The results from unit root tests are presented in Table 2. The 
tests yield negative values in all cases for levels, such that the individual returns series reject the null 
hypothesis at the 1% significance level, so that all returns are stationary. 
 

Table 2. Unit Root Tests 
 

Returns 
Augmented Dickey-Fuller Test Phillips-Perron Test 

Constant Constant and Trend Constant Constant and Trend 
I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) 

RCRUDE -35.712*** -17.304*** -35.717*** -17.297*** -35.712*** -811.866*** -35.717*** -810.068*** 
RGASOLINE -36.319*** -19.835*** -36.353*** -19.827*** -36.343*** -549.900*** -36.457*** -550.837*** 
RHEATOIL -34.294*** -15.271*** -34.323*** -15.264*** -34.288*** -316.475*** -34.309*** -316.093*** 
RNG -38.190*** -18.018*** -38.181*** -18.011*** -38.198*** -309.877*** -38.235*** -309.762*** 

*** denote significance at the 1% level 
 
5.2. Vector Autoregression Model 

An important task is to model the conditional mean and conditional variances of the return 
series. Therefore, the appropriate multivariate conditional volatility model given as VAR (1)-diagonal 
VECH, VAR (1)-diagonal BEKK and VAR (1)-CCC models is estimated. The conditional mean 
comes from VAR (Vector Autoregression Model) which can display the source as follows: 

Let ),...,,( 21  ntttt YYYY  denote a 1k  vector of petroleum future return series variables. 
The basic vector autoregressive model of order p, VAR (p), is 
                                    

 ,...221 tptptttt YYYcY         ,,...1 Tt                                (8)                         

where t are kk   matrices of coefficients, c  is a 1k  vector of constants and t  is an  1k  
unobservable zero mean white noise vector process with covariance matrix  . 
 As in the univariate case with AR processes, we can use the lag operator to represent VAR (p) 
  ,tt cYL    where p

pn LLIL  ...)( 1  

 If we impose stationarity on tY  in (8), the unconditional expected value is given by 

.)...( 1
1 cI pn

  



International Journal of Energy Economics and Policy, Vol. 5, No. 1, 2015, pp.105-120 

112 

 

Lag Length Selection: a reasonable strategy how to determine the lag length of the VAR 
model is to fit VAR (p) models with different orders max,...,0 pp   and choose the value of p which 
minimizes some model selection criteria. Model selection criteria for VAR (p) could be base on 
Akaike (AIC), Schewarz-Bayesian (BIC) and Hannan-Quinn (HQ) information criteria. 

Before we construct the conditional mean, the first thing to do is to find the right lag of VAR 
model as shown in the table 3. From the various criterions are found to be selected lag that 1 and 3. 
Most of them will choose lag 1. We therefore conclude that lag 1 should be suitable for the conditional 
mean. 

After all multivariate conditional volatility models in this paper are already estimated. The 
next step, we will have to explain that the results of each model and select the best model. 

The VAR (1)-diagonal VECH estimates of the conditional correlation between the volatilities 
of the four petroleum future returns base on estimating the univariate GARCH (1,1) model for each 
the petroleum are given in Table 4. The estimates of the VAR (1) - diagonal VECH parameters that 1  
and 2  are statistically significant in almost all cases except in the case of ._. RNGRGA (gasoline with 
natural gas). This indicates that the short run persistence of shocks on the dynamic conditional 
correlations is greatest for RCRUDE with RHEATOIL at 0.075 ( 1 ), while the largest long run 
persistence of shocks to the conditional correlations is 0.990 ( 21   ) for RCRUDE with 
RGASOLINE. 

 
Table 3. Lag order selection 

Lag LR FPE AIC SC HQ 
0 NA 4.50e-15 -21.682 -21.666 -21.676 
1 298.686 3.63e-15* -21.897* -21.815* -21.866* 
2 23.257 3.66e-15 -21.890 -21.742 -21.835 
3 35.799* 3.64e-15 -21.894 -21.680 -21.813 
4 12.914 3.70e-15 -21.879 -21.598 -21.773 
5 13.980 3.75e-15 -21.864 -21.518 -21.734 
6 23.184 3.78e-15 -21.858 -21.446 -21.703 
7 11.364 3.84e-15 -21.841 -21.363 -21.662 
8 10.107 3.91e-15 -21.824 -21.280 -21.619 

Note: * indicates lag order selected: LR= Sequential modified LR test statistic, FPE=Final prediction error,  
           AIC=Akaike information criterion, SC=Schwarz information criterion, HQ=Hannan-Quinn information   
           criterion  

 
 The VAR (1)-diagonal BEKK estimates of the conditional correlation between the volatilities 
of the four petroleum future returns are given in Table 5. The estimates of the diagonal BEKK 
parameters that 1  and 2  are statistically significant in all cases. This indicates that the short run 
persistence of shocks on the dynamic conditional correlations is greatest at 0.059 for RCRUDE with 
RHEATOIL, while the largest long run persistence of shocks to the conditional correlations is 0.991 
( 21   ) for RCRUDE with RGASOLINE, RCRUDE with RHEATOIL and RGASOLINE with 
RHEATOIL. 
 Finally, in Table 6 presents the estimates for the VAR (1)-CCC model, 
with 1 srqp . The ARCH and GARCH estimates of the conditional variance between the 
four petroleum future returns are statistically significant in all cases. The ARCH ( ) estimates are 
generally small (less than 0.2), and the GARCH (  ) estimates are generally high (more than 0.8) and 
close to one. Therefore, the long run persistence (   ), is generally to one, indicating a near long 
memory process. This indicates a near long memory process. In addition, since 1  , all 
petroleum satisfies the second moment and log-moment condition, which is a sufficient condition for 
the QMLE (quasi-maximum likelihood) to be consistent and asymptotically normal. VAR (1)-CCC 
estimates of the constant conditional correlation between RCRUDE and RHEATOIL with the highest 
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in 0.725. This indicates that the standardized shock on the constant conditional correlation for 
RCRUDE with RHEATOIL is 0.725. 

 
Table 4. VAR (1) - diagonal VECH model estimates 

Note: standard error in parenthesis, *** denote significance at the 1% level, **denote significance at the 5% level and  
          * denote significance at the 10% level, RCR. =the returns of crude oil, RGA.=the returns of gasoline, RHE.=the  
          returns of heat oil and RNG.=the returns of natural gas 

 
 
 Furthermore, we will choose the best model next by considering the value of log-likelihood, 
AIC, SIC and HQ. From the Table 4, 5 and 6, we found that the VAR (1)-diagonal VECH model is 
highest log-likelihood equal 14172.68. AIC, SIC and HQ are lowest, equal -22.578, -22.373 and  
-22.501, respectively. Thus, it can be concluded that we should choose the VAR (1)-diagonal VECH 
model in volatility analysis of the petroleum future returns and the results of this model are used to 
calculate the optimal two-petroleum portfolio weights and hedging ratios. 
 However, we can show the movement of the conditional covariance and the conditional 
correlation of the four petroleum future returns in each model according to Figure 3, 4, 5, 6 and 7, 
respectively. 
5.3. Multivariate GARCH diagnostic tests 
 The multivariate GARCH models consist of the VAR (1)-diagonal VECH, the VAR (1)-
diagonal BEKK and the VAR (1)-CCC model. We can diagnostic check on the system residuals to 
determine efficiency of estimator according to the Table 7. We found that system residuals have no 
autocorrelations up to lag 6 and are not normally distributed. Therefore, it can be concluded that the 
estimators of multivariate GARCH model are efficient. 

VAR (1) 
 

RCR. RGA. 
 

RHE. RNG.   
RCR._RGA. 

  

RCR._RHE. 
  

RCR._RNG. 
  

RGA._RHE. 
  

RGA._RNG. 
  

RHE._RNG. 

RCR.(-1) 
 
 
RGA.(-1) 
 
 
RHE.(-1) 
 
 
RNG.(-1) 

-0.051 
(0.034) 

 
0.386*** 
(0.015) 

 
-0.088** 
(0.037) 

 
0.012 

(0.011) 

0.082** 
(0.039) 

 
0.118*** 
(0.026) 

 
-0.024 
(0.046) 

 
-0.0002 
(0.0130) 

0.012 
(0.026) 

 
0.363*** 
(0.012) 

 
-0.101*** 

(0.034) 
 

0.016* 
(0.009) 

0.034 
(0.075) 

 
0.040 

(0.040) 
 

0.085 
(0.086) 

 
-0.060* 
(0.033) 

- - - - - - 

  
(Constant) 

2.73E-06***
(7.04E-07) 

1.76E-05*** 
(2.06E-06) 

2.19E-06*** 
(4.64E-07) 

1.31E-05*** 
(4.50E-06) 

- - - - - - 

 
  

0.074*** 
(0.007) 

0.077*** 
(0.006) 

0.074*** 
(0.006) 

0.045*** 
(0.008) 

- - - - - - 

  0.915*** 
(0.007) 

0.875*** 
(0.008) 

0.914*** 
(0.006) 

0.936*** 
(0.010) 

- - - - - - 

   0.989 0.952 0.980 0.981 - - - - - - 

0  

(Constant) 

- - - - 4.67E-07 
(4.96E-07) 

1.43E-06*** 
(3.92E-07) 

3.04E-06 
(2.42E-06) 

6.05E-07* 
(3.60E-07) 

1.82E-06 
(2.14E-06) 

3.99E-06 
(3.38E-06) 

1  - - - - 0.069*** 
(0.005) 

0.075*** 
(0.006) 

0.020* 
(0.012) 

0.070*** 
(0.007) 

-0.004 
(0.010) 

0.024** 
(0.010) 

2  - - - - 0.921*** 
(0.006) 

0.914*** 
(0.006) 

0.870*** 
(0.089) 

0.919*** 
(0.005) 

0.934*** 
(0.077) 

0.821*** 
(0.130) 

21    - - - - 0.990 0.989 0.890 0.989 0.930 0.981 

  
Log-likelihood=14172.68 

 
AIC=-22.578 

 
SIC=-22.373 

 
HQ=-22.501 
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Table 5. VAR (1) - diagonal BEKK model estimates 

     Note: standard error in parenthesis, *** denote significance at the 1% level, **denote significance at the 5% level and  
              * denote significance at the 10% level, RCR. =the returns of crude oil, RGA.=the returns of gasoline, RHE.=the   
              returns of heat oil and RNG.=the returns of natural gas 

 
Table 6. VAR (1) - CCC model estimates  

      Note: standard error in parenthesis, *** denote significance at the 1% level, **denote significance at the 5% level and  
                * denote significance at the 10% level, RCR. =the returns of crude oil, RGA.=the returns of gasoline, RHE.=the   
                returns of heat oil and RNG.=the returns of natural gas 

VAR (1) 
 

RCR. RGA. 
 

RHE. RNG.   
RCR._RGA
. 

  

RCR._RHE. 
  

RCR._RNG. 
  

RGA._RHE. 
  

RGA._RNG
. 

  

RHE._RNG
. 

RCR.(-1) 
 
 
RGA.(-1) 
 
 
RHE.(-1) 
 
 
RNG.(-1) 
 

-0.041 
(0.033) 

 
0.386*** 
(0.015) 

 
-0.100*** 

(0.037) 
 

0.010 
(0.011) 

0.105** 
(0.042) 

 
0.136*** 
(0.025) 

 
-0.050 
(0.048) 

 
-0.0004 
(0.013) 

0.022 
(0.027) 

 
0.364*** 
(0.012) 

 
-0.110*** 

(0.034) 
 

0.013 
(0.009) 

 

0.025 
(0.074) 

 
0.051 

(0.039) 
 

0.078 
(0.083) 

 
-0.057** 
(0.033) 

- - - - - - 

  
(Constant) 

1.92E-06*** 
(5.08E-07) 

3.57E-06*** 
(7.01E-07) 

1.66E-06*** 
(3.61E-07) 

2.09E-05*** 
(5.75E-06) 

- - - - - - 

2  
0.059*** 

 
0.046*** 

 
0.060*** 

 
0.034*** 

 
- - - - - - 

2  
0.933*** 

 
0.945*** 

 
0.931*** 

 
0.938*** 

 
- - - - - - 

22   0.992 0.991 0.991 0.972 - - - - - - 

0  

(Constant) 

- - - - 7.70E-07** 
(3.00E-07) 

1.07E-6*** 
(2.85E-07) 

6.87E-07 
(5.78E-07) 

8.72E-7*** 
(2.22E-07) 

7.77E-07 
(5.87E-07) 

6.84E-07 
(4.86E-07) 

1  - - - - 0.052*** 
 

0.059*** 
 

0.045*** 
 

0.053*** 
 

0.040*** 
 

0.045*** 
 

2  - - - - 0.939*** 
 

0.932*** 
 

0.935*** 
 

0.938*** 
 

0.941*** 
 

0.934*** 
 

21    - - - - 0.991 0.991 0.980 0.991 0.981 0.979 

  
Log-likelihood=14124.700 

 

 
AIC=-22.520 

 
SIC=-22.364 

 
HQ=-22.462 

VAR (1) 
 
 
 

RCR. RGA. 
 

RHE. RNG.   
RCR._RGA. 

 

  

RCR._RHE. 
  

RCR._RNG. 
  

RGA._RHE. 
  

RGA._RNG. 
  

RHE._RNG. 
 

RCR.(-1) 
 
 
RGA.(-1) 
 
RHE.(-1) 
 
RNG.(-1) 
 

-0.068* 
(0.040) 

 
0.386*** 
(0.017) 
-0.084* 
(0.046) 
0.011 

(0.014) 

0.082* 
(0.050) 

 
-0.008 
(0.035) 
-0.107* 
(0.058) 
0.015 

(0.017) 

0.006 
(0.034) 

 
0.368*** 
(0.015) 

-0.100** 
(0.043) 
0.011 

(0.011) 

0.034 
(0.074) 

 
0.051 

(0.040) 
0.077 

(0.085) 
-0.068** 
(0.031) 

- - - - - - 

  
(Constant) 

5.59E-06***
(1.40E-06) 

0.0001*** 
(2.29E-05) 

8.17E-06***
(1.55E-06) 

1.28E-05***
(4.18E-06) 

- - - - - - 

  0.032*** 
(0.007) 

0.148*** 
(0.022) 

0.055*** 
(0.006) 

0.047*** 
(0.007) 

- - - - - - 

  0.939*** 
(0.012) 

0.495*** 
(0.084) 

0.889*** 
(0.013) 

0.936*** 
(0.008) 

- - - - - - 

   0.971 0.643 0.944 0.983 - - - - - - 

Constant 
Conditional 
Correlation  

- - - - 0.311*** 
(0.022) 

0.725*** 
(0.011) 

0.093*** 
(0.029) 

0.345*** 
(0.023) 

0.043 
(0.029) 

0.069** 
(0.027) 

  
Log-likelihood=13886.940 

 

 
AIC=-22.140 

 
SIC=-21.984 

 
HQ=-22.082 
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Figure 3. Conditional Covariance (VAR (1) - diagonal VECH estimates) 
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Figure 4. Conditional Covariance (VAR (1) - diagonal BEKK estimates) 
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Figure 5. Conditional Covariance (VAR (1) - CCC estimates) 
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Figure 6. Conditional Correlation (VAR (1) - diagonal VECH estimates) 
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Figure 7. Conditional Correlation (VAR (1) - diagonal BEKK estimates) 
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Table 7. Multivariate GARCH diagnostic tests 
 

Test 
VAR(1)-diagonal VECH 

Lags Value Probability Test Value Probability 
System Residual Tests 
for Autocorrelations 
H0=no residual 
autocorrelation  
 
(Q-Stat) 

1 
2 
3 
4 
5 
6 

17.472 
41.002 
60.203 
69.748 
84.451 
104.294 

     0.355 
0.132 
0.111 
0.290 
0.345 
0.264 

System Residual 
Normality Tests 
H0=Multivariate 
normal 
-Skewness (Chi-sq) 
-Kurtosis (Chi-sq) 
-Jarque-Bera 

 
 
 
 

   83.522 
3125.908 
3209.431` 

 
 
 
 

0.000 
0.000 
0.000 

Test VAR (1) – diagonal BEKK 
Lags Value Probability Test   

System Residual Tests 
for Autocorrelations 
H0=no residual 
autocorrelation  
 
(Q-Stat) 

1 
2 
3 
4 
5 
6 

22.052 
41.683 
60.093 
69.896 
83.382 
102.976 

0.141 
0.117 
0.113 
0.286 
0.375 
0.294 

System Residual 
Normality Tests 
H0=Multivariate   
normal 
-Skewness (Chi-sq) 
-Kurtosis (Chi-sq) 
-Jarque-Bera 

 
 
 
 

    51.080 
3990.282 
4041.363 

 
 
 
 

0.000 
0.000 
0.000 

Test VAR (1) - CCC 
Lags Value Probability Test   

System Residual Tests 
for Autocorrelations 
H0=no residual 
autocorrelation  
 
(Q-Stat) 

1 
2 
3 
4 
5 
6 

3.251 
28.200 
50.570 
60.661 
73.413 
92.505 

0.999 
0.659 
0.372 
0.595 
0.685 
0.582 

System Residual 
Normality Tests 
H0=Multivariate   
normal 
-Skewness (Chi-sq) 
-Kurtosis (Chi-sq) 
-Jarque-Bera 

 
 
 
 

 111.783 
5480.235 
5592.018 

 
 
 
 

0.000 
0.000 
0.000 
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6. Implications for Portfolio Designs and Hedging Strategies 
 We provide two examples for constructing optimal portfolio designs and hedging strategies 
using our best estimates of model VAR (1)-diagonal VECH for the petroleum. 
 The first example follows Kroner and Ng (1998) by considering a portfolio that minimize risk 
without lowering expected returns. If we assume the expected returns to be zero, the optimal portfolio 
weight of one petroleum (or asset) to the other in a two petroleum (asset) portfolio is given by: 

                                             
ttt

tt
t hhh

hh
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                                                             (9) 

and 

                                               
















1,1
10,

0,0

,12

,12,12

,12

,12

t

tt

t

t

wif
wifw

wif
w                                  (10) 

where tw ,12 is the weight of the first petroleum in one dollar portfolio of two petroleum at time t , th ,12  

is the conditional covariance between petroleum 1 and 2 and th ,22  is the conditional variance of the 

second petroleum in the one dollar portfolio is tw ,121 . 

 The average values of tw ,12 base on VAR (1)-diagonal VECH estimates are reported in the 

first column of Table 8. For instance, the average value of tw ,12 of a portfolio comprising crude oil and 
heat oil is 0.23. This suggests that the optimal holding of crude oil in one dollar of crude oil/heat oil 
portfolio be 23 cents and 77 cents for heat oil. These optimal portfolio weights suggest that investors 
should have more heat oil than crude oil and other petroleum in their portfolio to minimize risk 
without lowering the expected return. The petroleum between crude oil and gasoline, investors should 
have more crude oil than gasoline (64% to 36%) in their portfolios. When it comes to the petroleum 
between heat oil and natural gas, the optimal portfolio should be 82% to 18% and investors should 
have more heat oil than natural gas. 
 
Table 8. hedge ratios and optimal portfolio weights base on VAR (1)-diagonal VECH 

Portfolio Average tw ,12  Average t  
Crude oil/gasoline 0.64 0.27 
Crude oil/heat oil 0.23 0.86 
Crude oil/natural gas 0.78 0.03 
Gasoline/heat oil 0.24 0.55 
Heat oil/natural gas 0.82 0.03 

 
 We now follow the example given in Kroner and Sultan (1993) regarding risk-minimizing 
hedge ratios and apply it to our petroleum. In order to minimize risk, a long (buy) position of one 
dollar taken in one petroleum should be hedged by a short (sell) position of t  in another petroleum at 
time t . The rule to have an effective hedge is to have an inexpensive hedge. The t  is given by: 

                                                                  
t

t
t h

h

,22

,12                                                               (11) 

where t is the risk minimizing hedge ratio for two petroleum, th ,12  is the conditional covariance 

between petroleum 1 and 2 and th ,22 is the conditional variance of the second petroleum. 

 The second column of Table 8 reports the average values of t . The results show that the most 
effective hedging among all the petroleum is hedging long (buy) crude oil position by shorting 
(selling) natural gas. The least effective hedging among all the petroleum is hedging long (buy) crude 
oil position using (selling) heat oil.   
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7. Conclusion  
 This paper investigates volatility comovements and spillovers for crude oil, gasoline, heat oil 
and natural gas future. The results of volatility analysis are used to calculate the optimal two-
petroleum portfolio weights and hedging ratios. In addition, this paper estimated three popular 
multivariate GARCH models, namely the VAR (1) - diagonal VECH, the VAR (1) - diagonal BEKK 
and the VAR (1)-CCC model, for the four petroleum future returns.  

The empirical results overall showed that the estimates of the multivariate GARCH 
parameters are statistically significant in almost all cases except in the case of RGASOLINE with 
RNG. This indicates that the short run persistence of shocks on the dynamic conditional correlations is 
greatest for RCRUDE with RHEATOIL, while the largest long run persistence of shocks to the 
conditional correlations for RCRUDE with RGASOLINE. 
 The next step, we will choose the best model by considering the value of log-likelihood, AIC, 
SIC and HQ. We found that the best model in volatility and hedging ratios analysis is the VAR (1)-
diagonal VECH model. 

 The results from these optimal portfolio weights base on the VAR (1)-diagonal VECH 
estimates suggest that investors should have more heat oil than crude oil and other petroleum in their 
portfolio to minimize risk without lowering the expected return. Such results can be useful as the 
management the volatility of the petroleum for investors.  
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