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ABSTRACT

Accurate forecast in electricity consumption (EC) is of great importance for appropriate policy measures to be undertaken to avoid significant over or 
underproduction of electricity compared to the demand. This paper employs multiple regression (MLR) and autoregressive integrated moving average 
(ARIMA) for the econometric analysis. MLR has been used to investigate the impact of the potential economic factors that influence the consumption 
of electricity in energy-intensive industries while ARIMA is used for the electricity consumption forecasting from 2000 to 2026. ADF test has been 
applied to test for the unit-roots, the results show that all variables include a unit root on their levels but all series become stationary as a result of 
taking their first difference. Johansen technique and the Residuals based approach to testing for long-run relationships among variables has been used. 
The outcomes show that the variables are co-integrated. GDP per capita is statistically significant at a 1% level and EC decreases with higher GDP 
per capita. The results also show that EC increases with population, while Gross Capital Formation and Industry Value Added have less influence on 
EC. The ARIMA (1,1,1) was found to be the best model to forecast EC and the conclusion is provided.

Keywords: Co-integration, Electricity Consumption, Forecasting, Industry Sector, Stationarity 
JEL Classifications: C22, C52, E17

1. INTRODUCTION

Electricity consumption forecasting is an active research topic 
with significant practical implications for almost any industry or 
organization (Gordillo-Orquera et al., 2018). This is not surprising, 
as the accurate prediction of energy consumption and requirements 
has a positive impact on operational budgets of organizations 
(Soliman and Al-Kandari, 2010). Electrical load or demand 
forecasting is the prediction and projection of peak load demand 
levels and over all energy consumption patterns that supports an 
electric utility future system and business operation (Julio, 2000). 
It provides a projection of electric peak load, customer connections 
and energy demand within an area covering a period into the future 
to provide a good lead-time for planning so that the utility company 
can arrange for the needed investments and additions of equipment 
in a timely and efficient manner(Okoye and Madueme, 2016).

Depending on the time horizons of the planning strategies, the 
energy demand and peak load forecasting can be divided into 
following three categories namely: Short-term load forecasting 
with a period ranging from 1 h to 1 week. Medium term load 
forecasting with a period ranging from 1 week to 1 year. Long-
term load forecasting with a period, which is longer than a year. 
Countries may vary the definition of the time horizons, to meet 
their specific energy demand requirements. The long term is 
used by electric utility companies to predict the future needs for 
power supply and delivery system expansion such as generation 
units, transmission and distribution system, as well as equipment 
purchase and staff hiring (Anwar et al., 2018).

Over the last decade, Rwanda has shown a large increase in 
electricity generation. National figures seem to suggest that the 
country will reach an installed capacity of 570 MW by 2026 from 
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230MW in 2019. To achieve this objective, the government has 
involved private companies in the generation sector under long 
term ‘take or pay’ contracts through power purchase agreements 
(PPAs). To meet the economic growth vision of the country a 
significant increase in generation capacity is needed. With the rapid 
growth and target in installed power generation capacity, accurate 
forecast in electricity consumption is important for appropriate 
policy measures to be undertaken to avoid significant over or under 
production of electricity compared to the demand.

Rwanda Utility Regulatory Authority (RURA) (Rwanda Utilities 
Regulatory Authority, 2017), report that Energy Utility Corporation 
Limited (EUCL)- Rwanda Energy Group (REG) divide on-grid 
electricity customers in two categories for metering purposes. 
The first is postpaid metered category, which is mainly composed 
of industries, telecom towers as well as water treatments plants 
classes. The second is prepaid metered customers’ category, which 
covers mainly residential and non-residential customer classes. 
The total number of customers on prepaid metering system is 
955,108 while the postpaid metered customers amount to 2,589, 
giving a total connected customer number of 957,697 by June 
2019 (Rwanda Electricity Group, 2019).

While the postpaid entered on grid electricity customers represent 
only 0.3% of the total number of electricity consumers, they 
consumed 60% of all sold electricity during the second quarter of 
2019. This follows the same trend in the previous years. In terms 
of energy consumption, the postpaid metered customers energy 
demand was 106,920,380 kWh of electricity during the second 
quarter of 2019, while prepaid customers consumed 70,247,648 
kWh in the same period (Rwanda Electricity Group, 2019).

This study focuses on electricity intensive industries as big 
consumers of electricity, since they consume at least 60% of the 
energy produced and sold by the power utility in Rwanda. The 
study therefore carries out analysis of their energy consumption 
trend over the past 20 years and forecast their consumption for 
6 years based on time series annual data. Forecasting electrical 
peak load and energy consumption in electricity intensive 
industries can help policy makers, in power generation planning 
to develop medium to long term plans and mechanisms necessary 
to balance electricity supply and demand at all times.

A number of studies have been done in an effort to model and 
forecast electricity demand in the Electricity Supply Industry 
but such empirical study is yet to be conducted in Rwanda. The 
results from this study will no doubt contribute to Rwanda’s 
energy demand-side management, as well as policy and investment 
decisions in energy infrastructure, especially with regard to power 
generation options to meet the projected electricity demand.

According to Kaytez et al. (2015) overestimation of electricity 
consumption would lead to excess and idle capacity which means 
wasted financial resources, whereas underestimation would 
cause potential supply shortages and hence energy outages. 
Therefore, accurate and reliable modelling and forecasting of 
electricity demand in Rwanda is very important. Currently, the 
installed electricity generation capacity is 230 MW and with the 

ongoing projects in power generation in Rwanda, the installed 
capacity is expected to increase to 570 MW by 2026. Although, 
the number of customers with access to electricity from the main 
grid continue to increase, the electrical load consumption does 
not follow the same path to meet the rapid growth in electricity 
generation, hence the need for accurate and robust energy demand 
forecasting.

This study seeks to assess electricity consumption trends in the 
Industrial customer categories in Rwanda, over the period from 
2000 to 2019. It will develop a consistent and robust electricity 
demand-forecasting model for energy intensive customer category 
in Rwanda. This model will be used to project electricity demand 
for the industrial customer categories in Rwanda for the period 
2020 – 2026. This research will also identify the main variables, 
which have significant impact on the electricity demand by the 
energy intensive industry in Rwanda.

2. LITERATURE REVIEW OF ENERGY 
FORECASTING METHODS

Operating an electricity supply system to provide a secured 
supply of electricity to consumers is one of the most demanding 
tasks facing practitioners today. On the demand side, it involves 
forecasting consumers’ demand for electricity, and on the supply 
side, it involves scheduling electricity generating plant such 
that sufficient capacity is available, including adequate reserve 
margins, to meet the demands placed on the system. Failure to 
carry out these tasks accurately and efficiently will result in a 
failure of generation supply or this could result in the power 
utility’s inability to keep plant in operational readiness to meet 
peak demand.

For electrical distribution and generation industry, load forecasting 
is very important. It has many applications including energy 
purchasing, generation, transmission, load switching, contract 
evaluation, and infrastructure development. Electricity as a product 
has different characteristics compared to material products since it 
cannot be stored in bulk, which means that it should be generated 
as soon as it is demanded (Reddy, 2017; Almeshaiei and Soltan, 
2011), hence the reason why investment in generation, has to take 
into account the current and the future demand for electricity. It is 
therefore of great importance for the electric power producers to 
estimate in advance the future load on their systems using robust 
methods to define quantitatively future loads.

While numerous forecasting methods and models were developed 
to compute an accurate load forecasting, finding an appropriate 
forecasting model for a specific electricity network is not an 
easy task, and none of them can be generalized for all demand 
patterns (Zhanga and Wanga, 2017; Kuster et al., 2017; Hammad 
et al., 2020). The choice of a model, method and techniques to 
use for electricity forecasting is generally based on available 
data and forecasting period (short, medium and long-term). The 
nature of the data whether linear or non-linear, play a great role 
in choice of the model. The methods used for energy forecasting 
are described below.
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2.1. Econometric Models
Mahmoud et al. (2020), point out that models can be divided into 
two types, the multi-factor/cross-sectional forecasting method, 
which focuses on the search of the causal relationships between 
different influencing factors and forecasting values. The other 
type uses the time series forecasting method, which depends 
more on the historical series (Hammad et al., 2020). According 
to Mahmoud et al. (2020), because time series models are easy, 
quick and objective, they are the widely used and be sub-divided 
as follows: statistical models, machine learning models, and hybrid 
models. Saravanan et al. (2012), has also indicated that that long-
term forecasting methods can be classified into two categories: 
conventional approaches and technique based on artificial 
intelligence. They additionally note that, traditionally regression 
models have been the most popular in load forecasting and used 
to model the relationship between the load and external factors.

A hybrid ARIMA–ANN model for the prediction of time series 
data, was proposed by Zhang (2003). This hybrid model was 
shown to outperform individual ARIMA and ANN models in the 
case of one-step-ahead prediction. Another linear autoregressive 
integrated moving average (ARIMA) and nonlinear artificial 
neural network (ANN) models have been explored by Narendra 
(2014) to devise a new hybrid ARIMA–ANN model for the 
prediction of time series data. They point out that many of the 
hybrid ARIMA–ANN models which exist in the literature apply 
an ARIMA model to given time series data, consider the error 
between the original and the ARIMA-predicted data as a nonlinear 
component, and model it using an ANN in different ways.

A numerous number of studies used different techniques to forecast 
long, medium and short-term electricity consumption based on 
historical consumption and economic factors that are relevant to 
affect electricity demand. Ghanbari et al. (2009), employ artificial 
neural networks (ANN) and regression (Linear and Log-Linear) 
approaches for annual electricity load forecasting to present a 
model that is affected by two economical parameters, which are 
Real- GDP and Population. The nonlinear ANN and three types 
of linear models namely, multiple log-linear regression (LNREG), 
response surface regression (RSREG), and regression with ARMA 
errors model (ARMAX), were proposed by Pao (2006) and noted 
that the forecasting performance of ANN is higher than the other 
linear models. By adopting the linear and nonlinear ANN methods, 
surprisingly, they find that economic indicators, GDP and CPI, 
have less effect on Taiwan’s electricity consumption than country 
population (POP) and National Income (NI).

Feilat et al. (2017), present a neural network (NN) based approach 
for long-term load forecasting (LTLF) of the Jordanian power 
system from 2015 to 2029. They examined two types of feed 
forward neural networks (FFNN), namely, the back-propagation 
and the radial basis function neural networks; (BPNN) and 
(RBFNN), respectively. The simulation results show that both 
neural networks show quite good performance over a long 
forecasting period. They also found that peak load is related to 
the GDP and population. Saravanan et al. (2012) used multiple 
linear regression (MLR) and ANNs to predict the long-term 
electricity consumption in India using CO2 emissions, population, 

Per capita GDP, gross national income (GNI), gross domestic 
saving, consumer price index (CPI), industrial production index 
(IPI), Imports, Wholesale price, Exports and Per capita power 
consumption as economic factors. The results showed that the use 
of ANNs led to more accurate results than linear models.

Kumaran and Ravi (2014) proposed a model, which comprises 
two regression models, the former one predicts the population 
(POP) and per capita GDP for a given future year and the later 
one estimates the sector wise energy demand by considering 
the output of the former as input. In this study, they agreed with 
most of the literature (Ghanbari et al., 2009; Saravan et al., 2012) 
that among economic factors, the population growth as well 
the continuous improvement in the public revenue and living 
standards, represented through per capita GDP are linked with the 
total energy consumption of any country. Therefore, their proposed 
model can help the policy makers to develop robust energy demand 
models to serve as the basis for making the necessary investments 
in new generation plants and transmission systems, to meet the 
future demands and offer reliable service to current and future.

For modeling and forecasting future electricity consumption some 
of the literature proposed univariate Box-Jenkins time-series 
analyses, which are Autoregressive Moving Average (ARIMA 
models) (Box and Jenkins, 1970). Univariate Box-Jenkins time-
series analyses (ARIMA models), were used for modeling and 
forecasting future energy production and consumption in Asturias 
(Gonzales et al., 1999). Thabani (2019) used annual time series 
data on electricity demand in Zimbabwe from 1971 to 2014 to 
model and forecast the demand for electricity using the Box-
Jenkins ARIMA framework. He found that demand for electricity 
in Zimbabwe reached its annual peak in 1976, and since then, 
electricity consumption declined until 2019. The ARIMA (1, 1, 
6) model proves that in the next 10 years (2015–2025), demand 
for electricity in Zimbabwe will continue to fall.

Mahmoud et al. (2020), point out that regression analysis based 
models and artificial neural networks (ANN) are more appropriate, 
preferred and most utilized in electricity predictions, while the 
statistical models like the Box-Jenkins models’ family in particular, 
are not widely used anymore as was the case in the past, but their 
use still cannot be neglected or overlooked. Although, ARMA, 
ARIMA, ARM\AX, and ARIMAX are the most often used 
classical time series methods Tahreem et al. (2018), concluded that 
electricity demand forecasting techniques based on soft computing 
methods are gaining major advantages for their effective use. They 
add that there is also a clear move towards hybrid methods, which 
combine two or more of these techniques. Hybrid models, which 
combine the strengths of ARIMA and ANN models, are better than 
the individual types of models, as they are capable of exploiting 
the advantages of both types of models simultaneously (Babu and 
Reddy, 2014; Barak and Sadegh, 2016).

2.2. Trend Method
This method falls under the category of the non-causal models 
of demand forecasting that do not explain, how the values of 
the variable being projected are determined. This approach 
expresses the variable to be predicted purely as a function of 
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time, rather than by relating it to other economic, demographic, 
policy and technological variables. This function of time is 
obtained as the function that best explains the available data, 
and is observed to be most suitable for short-term projections. 
The trend method has the advantage of its simplicity and ease 
of use. However, this method is important as it provides a 
preliminary estimate of the forecasted value of the variable. 
It may well serve as a useful method for crosschecking the 
robustness of results from other prediction methods, particularly 
for short-term forecasts.

2.3. End-use Method
The end-use approach attempts to capture the impact of energy 
usage patterns of various devices and systems. It directly estimates 
energy consumption by using extensive information on end use and 
end users, such as appliances, the customer use, their age, sizes 
of houses, and so on (Anwar et al., 2018). The end-use method is 
based on the premise that energy is required for the service that 
it delivers and not as a final good.

This method takes into account improvements in efficiency of 
energy use, utilization rates, inter-fuel substitution etc., in a sector 
as these are captured in the power required by an appliance. 
These models are based on the principle that electricity demand 
is derived from customer’s demand for light, cooling, heating, 
refrigeration, etc. Thus, the end-use models explain energy 
demand as a function of the number of appliances used and in 
the market.

2.4. Time Series Method
A time series is defined to be an ordered set of data values of a 
certain variable. Time series models are, essentially, econometric 
models where the only explanatory variables used are lagged 
values of the variable to be explained and predicted. The intuition 
underlying time-series processes is that the future behavior of 
variables is related to its past values, both actual and predicted, 
with some adaptation/adjustment built-in to take care of how 
past realizations deviated from those expected. It has been 
used for decades in such fields as economics, digital signal 
processing, as well as electric load forecasting. In particular, 
ARMA (autoregressive moving average), ARIMA (autoregressive 
integrated moving average), ARM\AX (autoregressive moving 
average with exogenous variables), and ARIMAX (auto regressive 
integrated moving average with exogenous variables) most often 
used classical time series methods (Anwar et al., 2018).

The essential prerequisite for a time series forecasting technique 
is the need to have data for the last 20-30 time - periods. The 
difference between econometric models based on time series data 
and time series models lies in the explanatory variables used. 
It is worthwhile to highlight that in an econometric model, the 
explanatory variables (such as incomes, prices, population etc.) 
are used as causal factors while in the case of time series models 
only lagged (or previous) values of the same variable are used in 
the prediction.

In general, the most valuable applications of time series come 
from developing short-term forecasts, for example monthly models 

of demand for 3 years or less. Econometric models are usually 
preferred for long-term forecasts. Another advantage of time series 
models is their structural simplicity. They do not require collection 
of data on multiple variables. Observations on the variable under 
study are sufficient. A disadvantage of these models, however, is 
that they do not describe a cause-and-effect relationship. Thus, a 
time series does not provide insights into why changes occurred 
in the variable.

2.5. Hybrid Approaches
According to Hesham and Nazeeruddin (2002), after surveying 
different approaches, they observe a clear trend toward new, 
stochastic, and dynamic forecasting techniques. They also mention 
that, despite a lot of research in the 2000s, effort was focused on 
fuzzy logic, expert systems and particularly neural networks. There 
was a clear move towards hybrid methods, which combines one 
or more of the above approaches and techniques.

For instance, it is common to use a combination of econometric 
and time series models to achieve greater precision in the forecasts. 
This has the advantage of establishing causal relationships as in 
an econometric model along with the dependency relationship. 
Various functional forms such as linear, quadratic, log-linear, 
translog, etc. are used to capture the possible trends that may be 
evident in the data.

3. METHODOLOGY

The objective of this study is to analyze and forecast electricity 
consumption in the industrial sector in Rwanda from 2000 to 
2026. As shown in the literature review, the level of electricity 
consumption is generally influenced by different economic 
factors such as industrial efficiency, gross capital formation, total 
population as well as the Gross Domestic Product (GDP) per capita 
as independent variables.

The model uses a Cobb-Douglas function in which electricity 
consumption in the energy intensive industries in Rwanda 
depends on national gross domestic product (GDP) per capita, 
industrialization represented through gross capital formation (GF), 
industrial efficiency represented through industry value added (IV) 
and total population of Rwanda (POP).

 EC = f (GDPC, GF, IV, POP) (1)

The function (1) can be expressed as follows:

ECt = eα0×(GDPCt)
α1× (GFt)

α2×(IVt)
α3×(POPt)

α4×eεt (2)

The coefficients (alphas) in equations (2) and (3) measure the 
relative importance of each factor in explaining the underlying 
behavior of electricity consumption. To be able to interpret these 
coefficients as elasticities, we transform the equation above by 
taking the natural logs of both sides of Equation (2). Thus, Eq. 
(2) becomes;

Log ECt =  α0+α1Log GDPCt+α2LogGFt+α3Log IVt 
+α4Log POPt+εt (3)
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Where:
ECt is the electricity consumption for period t in kWh, in the 
industrial sector
α0 is the intercept term;
α1, α2, α3 and α4 are the estimated coefficients of the explanatory 
variables;
εt is the noise stochastic disturbance term.

The relevance of the factors in Rwandan context and data 
availability within the sample period are the main factors that 
informed the choice of explanatory variables. The empirical 
specification is based on the modified one by Adom et al. (2012) 
and that of Zuresh and Peter (2007) by including Population and 
Gross Capital Formation (GF) for measuring industrialization.

3.1. Brief Explanations of the Variables
3.1.1. GDP per capita
Per capita gross domestic product (GDP) as a metric that breaks 
down a country’s economic output per person, and is calculated 
by dividing the GDP of a country by its total population. GDP 
per Capita thus measures the continuous improvement in the 
public revenue and living standards of the population. The data 
used for the modelling are in constant 2010 U.S. dollars. Based 
on economic theory, the increase in GDP per capita is expected to 
increase the purchasing power of a population and the population 
demand for industrial products. To satisfy the demand, this can be 
achieved by using more efficient technologies to keep the level 
of electricity consumption unaffected or to achieve significant 
reduction in electricity consumption as first scenario. The second 
scenario is to increase the number of machines and equipment and 
this approach could lead to the consumption of more electricity, 
by the industrial company. In the first scenario, the increase in 
GDP per capita could have a negative effect on the electricity 
consumption but in the second scenario, the increase in GDP per 
capita could increase the electricity consumption in industrial 
sector. Therefore, in the long run, the expected sign of α1 for 
GDP per Capita can be negative or positive depending on industry 
strategies adopted to increase industrial production.

3.1.2. Gross capital formation
Gross capital formation (GF), also called “investment,” is the 
acquisition of assets including purchases of second-hand assets, 
as well as the production of such assets by industrial producers 
for their own use. The relevant assets relate to assets that are 
intended for use in the production of other goods and services for 
a period of more than a year. Economic structure and productivity 
are important determinants of energy demand, at the macro level, 
each of them influences energy intensity (Medlock, 2009). The 
decision to invest in capital stock, the type of capital stock, and 
the rate of utilization have a great impact on energy demand. As 
more energy efficient capital is deployed, the energy requirement 
for a given level of output declines, requiring less energy. This 
implies that it is possible for industrial sector growth to increase 
without an increase in energy demand.

Dan (2002) finds that there has been a gradual decline in energy 
consumption in China since 1978 despite increasing growth and 
attributed this to energy efficiency. After the oil price shocks in 

1973/74 and 1979/80, average productivity in energy use has 
increased due partly to the replacement of energy-inefficient 
capital with efficient ones (Berndt, 1990). This implies that the 
increase in gross capital can reduce the consumption of energy if 
the investment is made in energy efficient capital. Consequently, 
GF is expecting to reduce the electricity consumption of the sector 
if the investment is made in energy efficient capital replacing the 
energy inefficient ones. It is however possible to experience an 
increase in electricity consumption if the country is on starting 
phase of industrial development. In the latter case, the accumulated 
capital stock is not replacing the existing ones but it is new that is 
going to start to consume energy. Thus, α2 could be either negative 
or positive depending on whether energy efficient or inefficient 
capital stock was acquired or deployed.

3.1.3. Industry value added
According to World Development Indicators 2019, Industry Value 
Added equals the difference between an industry’s gross output and 
the cost of its intermediate inputs including energy, raw materials, 
semi-finished goods, and services that are purchased from all 
sources. Manufacturing is one of the pillars of development; this 
is based on transformation of raw materials in consumable goods 
and using complex technical transformation processes. Some of 
the sources of that, is technological advancement and fixed capital 
accumulation. This transformation leads to higher value added and 
greater economic welfare.

Industry efficiency through technological advancement and the 
structural changes in economy are the main drivers of a country’s 
industrial value added growth. The use of scale economies, the 
information and communication technology (ICT) revolution 
of recent decades has been the principal source of productivity 
growth for firms (Commission, 2016). For this study the measure 
of industry efficiency follows the study of Zuresh and Peter (2007) 
and Adom et al. (2012). In their model, the industry value added is 
used to capture the industrial efficiency and value addition effect.

Therefore, a decline in electricity consumption can be explained 
by a growth in industrial efficiency through technological progress 
represented by Industry value (IV). Thus, a negative correlation 
is expected between EC and IV and the sign of the coefficient, α3, 
is expected to be negative.

3.1.4. Total population
The population of a country is a demographic variable, which 
if combined with its purchasing power, will influence the 
consumption level of any country. This implies that, the increase 
in the population of a country is assumed to increase the demand 
of industrial production. Therefore, the industrial sector to satisfy 
the increased demand, need to produce more and consume more 
electricity.

3.2. Testing the Robustness of the Model
3.2.1. Test for multicollinearity
The size of variance of model estimators is practically important. 
A larger variance means a less precise estimator, and this translates 
into larger confidence intervals and less accurate hypotheses 
tests (Wooldridge, 2015). For given Xj independent variables, 
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Rj
2 (R-squared) is the proportion of the total variation in Xj that 

can be explained by the other independent variables appearing 
in the model. This implies that Multicollinearity occurs when 
independent variables in a regression model are correlated with 
each other. This correlation is a problem because the main goal 
of regression analysis is to isolate the relationship between each 
independent variable and the dependent variable, However, 
when independent variables are correlated, it indicates that 
changes in one variable are likely to be associated with those in 
another variable. This can reduce the robustness of the estimate 
coefficients, and weaken the statistical power of the regression 
model. According to Wooldridge (2015), Variance inflation Factor 
(VIF) can be used to test for multicollinearity.

 VIFj=1/(1–Rj
2) (4)

The equation (4) shows that VIFj is a function of Rj
2, this means 

that as the correlation between independent variables becomes 
high, VIF also becomes high. The objective is to have smaller 
VIF. The value 10 is chosen, below or above which to conclude 
that multicollinearity is a “problem” for estimating coefficients 
(Wooldridge, 2015).

3.2.2. Test and correct for serial correlation
Consequences of the error terms being serially correlated include 
inefficient estimation of the regression coefficients, resulting in 
under estimation of the error variance (mean square error), under 
estimation of the variance of the regression coefficients, and 
inaccurate confidence intervals. The Durbin-Watson test is used 
to test the presence of serial correlation.
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Where ˆtu  are estimated residuals.

Following Wooldridge, 2015, we use the first differencing of data 
to eliminate the serial correlation.

3.2.3. Stationarity/unity root test
Suppose that each of the variables in the model is represented by Yt

 Yt=ϕYt–1+εt (6)

Where εt is an error term, which is a random walk.
When φ = 1, the variable Yt is not stationary because Yt is still 
influenced by Yt–1
When φ = 0, the variable Yt is stationary because Yt = εt

We use Augmented Dicky Fuller Test (ADF) for Unity root test.

To use a time series for prediction, it has to be independently 
identically distributed (iid). This means that there is no auto-
correlation of errors. This is based on the following classical 
assumptions:
•	 E (εt)=0
•	 Var (εt)= σ2

•	 Cov (εt, εt–1)= 0

3.2.4. Co-integration test
The starting point of the model is to provide evidence about the 
effect of each independent variable on electricity consumption 
for industrial sector in Rwanda. The basic idea is to apply the 
multivariate co-integration test to check the long run relationship 
between the electricity consumption for industrial sector and 
each of the independent variables. Though co-integration is a 
statistical characteristic, and whether it exists among economic 
variables of interest is a question that has significant implications 
for understanding the behavior of those variables. It simply implies 
that, there is a linear combination of nonstationary variables, which 
is stationary. Evidence of co-integration means that a stationary 
long-run relationship among jointly endogenous random variables 
is present.

The distribution theory supporting the Dickey-Fuller test assumes 
that the error in the regression is identical and independently 
distributed. Hence, autocorrelation and heteroscedasticity should 
not be present in the estimated residuals. Once the variables are 
co-integrated the model can be used for forecasting electricity 
consumption in industrial sector and identify the variables that 
influence the consumption of electricity in the long run.

As regard to co-integration test among the variables, two broad 
approaches have been frequently applied. The Engel and Granger 
method, which is based on assessing whether single-equation 
estimates of the equilibrium errors, appear to be stationary (Engle 
and Granger, 1987). The second approach due to Johansen and 
Juselius (1990), is a version of analyzing multivariate co-integrated 
system based on the Vector Auto-regression (VAR) approach. To 
carry out the Johansen test, we should first formulate the VAR 
system and two statistic tests of the Johansen-Juselius method, 
the trace and maximum eigenvalue tests enable us to determine 
the presence and the number of co-integrating vectors.

3.3. Auto Regressive Integrated Moving Average 
(ARIMA) Model
This study will use Auto Regressive Integrated Moving Average 
Model for forecasting electricity consumption in the industrial 
sector in Rwanda. Assuming Xt is the current electricity 
consumption, and Xt-1 to Xt-p refers to electricity consumption in 
previous periods,	μt is the current error term and	μt-1 to	μt-q the error 
terms in previous periods, then:

•	 The moving average (MA) model can be written as:

 Xt=α0	μt+α1	μt–1+…+αq	μt–q (7)

This means that the current consumption of electricity depends 
on current and previous error terms or disturbances where	μt is a 
purely random process with mean zero and variance σ2.

•	 The autoregressive (AR) model

 Xt=β1 Xt–1+…+βp Xt–p+μt (8)

This means that the current consumption of electricity depends on 
the level of electricity consumption in previous periods.
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•	 The autoregressive moving average (ARMA) model
 As put forward by Box and Jenkins (1970), an ARMA (p, q) 

process is simply a combination of equations (7) and (8) or 
AR (p) and MA (q) processes. Thus, an ARMA (p, q) process 
can be specified as follows:

 Xt=β1 Xt–1+…+βp Xt–p+μt+α1	μt–1+…+αq	μt–q (9)

•	 The autoregressive integrated moving average (ARIMA) 
model

 Making prediction in time series using univariate approach 
is best done by employing the ARIMA models (Alnaa 
et al., 2011). A stochastic process Xt is referred to as an 
Autoregressive Integrated Moving Average (ARIMA) [p, d, q] 
process if it is integrated of order “d” [I (d)] and the “d” times 
differenced process has an ARMA (p, q) representation. If 
the sequence ΔdXt satisfies an ARMA (p, q) process; then the 
sequence of Xt also satisfies the ARIMA (p, d, q) process such 
that:

 � �d
t i

p
i
d

t i i

q
i t i tX X� � �

� � � �� �1 1
� � � �  (10)

The generalized ARIMA model is frequently used in empirical 
work because most variables, especially financial and economic 
variables are non-stationary.

3.4. Data
The data sets used in this paper are the historical data of the 
Rwanda’s industrial electricity consumption in Kilowatt Hours 
(kWh) for the years 2000 to 2019 (Table 1). The datasets were 
obtained from the Rwanda Energy Group. Gross Domestic Product 
per capita (GDPC), Gross Capital Formation (GF), Industry 
Value Added (IV) and Population (POP) as economic data, were 
obtained from the World Bank’s World Development Indicators 
(WDI) 2019.

4. FINDINGS

The regressions and forecasting, including all robustness tests 
were done using Eviews 7 software.

4.1. Unit Root/Stationarity Test
To start the co-integration analysis among the variables, the 
univariate properties of the data were first investigated. The 
underlying variables could be co-integrated only if each of them 
is stationary and integrated with the same order. The findings of 
stationarity test for all variables of the model are given in the 
following tables (Tables 2-6).

The Augmented Dickey-Fuller test is used for stationarity and 
shows that all variables include a unit root on their levels. While 

all variables include unit root as of their levels, all series become 
stationary as a result of taking their first difference to correct their 
serial correlation. This indicates that there are all integrated with 
order one, denoted as I (1). This implies that the variables could 
be co-integrated as each of them is stationary and integrated with 
the same order. This is because, if the time series do not follow 
the same order of integration, the estimated model can suggest no 
meaningful relationship among them.

4.2. Co-integration Tests
This study used the Johansen technique approach to test for long 
run relationship among variable through co-integration tests.

The results in Table 7 show that EC, GDPC, GF, IV and POP 
series are co-integrated and have a long run relationship, as the 
probabilities are less than 5%. This implies that the model can be 
used for forecasting.

4.3. Estimating Representative Equation
Regression results are presented in Table 8.

Representative equation

LN (EC) =  –82 .64–1 .75*LN (GDPC)+0 .03*LN(GF)–
0.15*LN(IV)+7*LN(POP)

4.4. Test of the Model Accuracy
To test the accuracy of the model, the residuals based approach 
is used. This approach consists of stationarity test of residuals 
from the estimated model. This implies that if the residuals are 
stationary at level, the model is accurate because the residuals of 
the model are not correlated over time (Table 9). Additionally, this 
involves also that the variables of the model are co-integrated and 
have a long run relationship. Thus implies that the model can be 
used for forecasting.

5. RESULTS AND DISCUSSION

•	 Model estimation results show that R-squared statistic is 
0.985. Since R-squared of the regression is the proportion of 
the variation in the dependent variable that is predicted by the 
independent variables, this implies that GDPC, GF, POP and 
IV as explanatory variables in the model account for about 
98.5 % of the variation in the dependent variable EC. Thus, 
the explanatory power of the model is high and appears to 
suggest that the included variables are good predictors of EC. 
F-statistic being significant implies that the overall goodness 
of fit of the model is satisfactory since Prob (F-statistic) is zero

•	 Meanwhile, considering the statistical significance of the 
coefficients, which could be judged from the Standard Error, 

Table 1: Variable name, measurement, expected sign (based on underlying theory) and data source
Variable Measurement Expected sign Data source
Electricity consumption in Industrial sector (EC) kWh - Rwanda Energy Group (REG)
Gross Domestic Product per capita (GDPC) US$ Positive or Negative World Development Indicators ( WDI)
Gross Capital Formation (GF)  US$ Positive or Negative WDI
Industry Value Added (IV)  % Negative WDI
Population (POP) - Positive WDI
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T-Statistic and the probability value of each coefficient, 
the results show that GDP per capita and population are 
statistically significant and therefore have great impact on 
electricity consumption of industrial sector. However, Gross 
capital formation and industry value added, have less impact as 
both variables are not statistically significant. However, Gross 
fixed capital has a positive impact and Industry value added 
has a negative impact on industry electricity consumption

•	 Gross domestic product per capita (GDPC) is statistically 
significant as its probability value is 0.0106. In other words, 
there is a 99% probability of being correct that GDPC variable 
is having effect on electricity consumption in the industrial 
sector of Rwanda. Unlike in most of the literature, GDPC has 
a negative effect on electricity consumption in the industrial 
sector (dependent variable). Based on the regression results, 
if GDPC increases by 1%, the electricity consumption in the 
industrial sector reduces by 1.75%. This can be attributed to 
the use of more modern and efficient technologies, and hence 
reduction in energy consumption. This was the same case 
in China after the oil price shocks in 1973/74 and 1979/80 
(Berndt, 1990)

•	 The variable population (POP) is statistically significant as 
the probability value of its coefficient is zero. This means that 
there is a 100% probability of being correct that Population 
is having effect on electricity consumption in the industrial 
sector of Rwanda. The results show that if Population 
increases by 1%, the electricity consumption is expected to 
increases by 7%. This can be attributed to the fact that the 
increase in population means more people will purchase goods 
produced by the industrial sector, and hence increase in the 
electricity consumption as the industrial companies seek to 
meet the demands of the population

•	 The variable gross capital formation (GF) is not statistically 
significant as its probability value is 0.9. It means that there 
is 10% probability that GF influences industry electricity 
consumption. The estimated model shows that if GF increases 
by 1%, the EC increases by 0.03%. It is clear that this effect 
of change in GF to EC is negligible compared to the other 
variables. This can be attributed to the type of capital stock, 
which is being accumulated in Rwanda. It is likely more 
energy efficient capital through ICT and modern technology 
have been deployed, which reduces energy requirement for 
a given level of output

•	 Like GF, industry value added (IV) is not statistically 
significant. Its probability value is 0.35, which means that 
there is 35% of probability that IV influences industry 
electricity consumption. It is shown that if IV increases by 1%, 
the EC reduces by 0.15%. The negative sign that was expected 
is consistent with some of the literature (Berndt, 1990). This 
can be attributed to the growth in industrial efficiency through 
technological progress.

6. CHOICE OF THE FORECASTING 
MODEL

After checking each ACF, PACF plot and simulations, the search 
for the optimal model to be used is shown in the table X. The 

Table 2: Stationarity test for electricity consumption 
variable

Null Hypothesis: D (LNEC) has a unit root
Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=4)
t-Statistic Prob.*

Augmented Dickey-Fuller test statistic –4.139765 0.0222

Table 3: Stationarity test for GDP per capita (GDPC) 
variable

Null Hypothesis: D (LNGDPC) has a unit root
Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=4)
t-Statistic Prob.*

Augmented Dickey-Fuller test statistic –5.253754 0.0006

Table 4: Stationarity test for gross capital formation 
variable

Null Hypothesis: D (LNGF) has a unit root
Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=4)
t-Statistic Prob.*

Augmented Dickey-Fuller test statistic –3.155956 0.0401

Table 5: Stationarity test for industry value added (IV) 
variable

Null Hypothesis: D (LNIV) has a unit root
Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=4)
t-Statistic Prob.*

Augmented Dickey-Fuller test statistic –4.227023 0.0047

Table 6: Stationarity test for total population variable
Null Hypothesis: D (LNPOP) has a unit root

Exogenous: Constant
Lag Length: 1 (Automatic - based on SIC, maxlag=4)

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic –12.33640 0.0000

Table 7: Johansen system co-integration test
Sample (adjusted): 2002–2019

Included observations: 18 after adjustments
Trend assumption: Linear deterministic trend
Series: LNEC LNGDPC LNGF LNIV LNPOP 

Lags interval (in first differences): 1–1
Unrestricted Cointegration Rank Test (Trace)

Hypothesized Eigenvalue Trace 0.05 Prob.**
No. of CE (s) Statistic Critical 

Value
None * 0.994272 201.0492 69.81889 0.0000
At most 1 * 0.969995 108.1255 47.85613 0.0000
At most 2 * 0.788507 45.01059 29.79707 0.0004
At most 3 * 0.582809 17.04646 15.49471 0.0290
At most 4 0.070226 1.310641 3.841466 0.2523
Trace test indicates 4 cointegrating eqn (s) at the 0.05 level. *Denotes rejection of the 
hypothesis at the 0.05 level. **MacKinnon-Haug-Michelis (1999) P-values
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candidate model is selected based on the lowest Akaike Information 
criterion (AIC) value and is considered as the most appropriate 
model to be used in forecasting. Moreover, additional various 
forecasting validation tools and statistical metrics such as Schwarz 
information criterion (SIC), Root Mean Squared Error (RMSE) 
and Theil inequality coefficient (U) were considered in selecting 
the appropriate model for forecasting electric consumption. The 
results show that ARIMA (1, 1, 1) is the most appropriate model 
to be used for forecasting because the ARIMA (1, 1, 1) has the 
lowest AIC, SIC and U value as shown in Table 10.

The lower are AIC, RMSE, bias proportion and U, the better is the 
forecasting model. This means that actual Electricity consumption 

and the forecasted EC are moving together. If “U” is equal to zero, 
it means that there is a perfect fit and there is no error. If “U” equal 
1 means that, the predictive power of the model is worst (Figure 1). 
Therefore, the “U” value, which is between 0 and 1, can be used 
to determine the best model. The best model is the one that has 
a “U” value that is closer to zero. The Figure 2, shows that this 
model has the bias proportion or systematic error, which is the 
gap between mean actual “EC” and forecasted “EC” is around 8% 
and it is considered to be very low.

EC line represents the actual values and ECF11 line represents 
the forecasted values. The way both lines are moving together 
further proves the accuracy of the forecast model. The Table 11, 

Table 8: Regression results
Dependent Variable: LNEC

Method: Least squares
Sample: 2000 2019

Included observations: 20
Variable Coefficient Std. Error t-Statistic Prob. 
C −82.64103 11.66550 −7.084226 0.0000
LNGDPC −1.757125 0.647253 −2.714744 0.0160
LNGF 0.031627 0.269643 0.117290 0.9082
LNIV −0.147142 0.153799 −0.956717 0.3539
LNPOP 7.138558 0.878567 8.125229 0.0000
R-squared 0.985066 Mean dependent var 18.92573
Adjusted R-squared 0.981084 S.D. dependent var 0.452499
S.E. of regression 0.062235 Akaike info criterion −2.503477
Sum squared resid 0.058098 Schwarz criterion −2.254544
Log likelihood 30.03477 Hannan-Quinn criter. −2.454883
F-statistic 247.3567 Durbin-Watson stat 1.516143
Prob (F-statistic) 0.000000

Table 9: Stationarity test for residuals
Null Hypothesis: RESIDUALS has a unit root

Exogenous: Constant
Lag Length: 1 (Automatic - based on SIC, maxlag=4)

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic −3.829471 0.0106
Test critical values: 1% level −3.857386

5% level −3.040391
10% level −2.660551

*MacKinnon (1996) one-sided P-values

Table 10: Simulations results
Model AIC SIC RMSE Theil inequality coefficient (U)
ARIMA (1,1,1) 34.76981 34.91893 6714 0.016
ARIMA (0,1,2) 38.76331 38.86288 8992 0.230
ARIMA (0,1,5) 38.99238 39.09196 8375 0.199
ARIMA (2,1,1) 37.26163 37.41002 32,300 0.948
ARIMA (2,1,2) 35.15098 35.29937 5824 0.123
ARIMA (2,1,3) 35.35191 35.50031 8249 0.201
ARIMA (2,1,4) 35.87350 36.02190 19,900 0.335
ARIMA (3,1,1) 37.91999 38.06702 15,000 0.488
ARIMA (3,1,2) 38.15872 38.30576 16,200 0.544
ARIMA (3,1,3) 35.48037 35.62741 3,139 0,073
ARIMA (3,1,4) 36.37713 36.52417 11,600 0.216
ARIMA (4,1,1) 37.63717 37.78203 6,669 0.134
ARIMA (4,1,3) 38.55401 38.69887 6,618 0.139
ARIMA (4,1,4) 38.32752 38.47238 6,527 0.1362
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shows an increasing trend in projected values of electricity 
consumption (kWh) for industrial use from 2020 to 2026, which 
is evident. An expected electric consumption of 489,476,216 
kWh is expected by the end of 2020 and 1,320,229,243 kWh 
by the end 2026. The specific forecasted values of electric 
consumption for industrial use in Rwanda for years 2020 to 
2026 are shown in Table 11.

7. CONCLUSION AND POLICY 
IMPLICATIONS

This study uses hybrid model to forecast industrial electricity 
consumption in Rwanda and investigates the long run relationship 
between economic variables and industrial electricity consumption. 
ADF test have been applied to test for the unit roots of the 
variables, the results showed that all variables are integrated with 
order one, denoted I (1). This means that the variables could be 
co-integrated, as each of them is stationary and integrated with 
the same order. If the time series do not follow the same order 

of integration, the estimated model can suggest no meaningful 
relationship among them.

We used the Johansen technique and the Residuals based 
approach to test for long run relationship among industrial 
electricity consumption, economic growth, industrialization, 
industrial efficiency and population through co-integration tests. 
The outcomes showed that the variables are co-integrated with 
four co-integrating equations, which means that there is a long 
run relationship between the variables. The regression model 
estimation showed that Electricity Consumption in the industrial 
sector decreases with higher GDP per capita but increases with 
country population, while Gross Capital Formation and Industry 
Value Added are not statistically significant and hence have less 
influence on industrial electricity consumption.

Even if the predicted values of industrial electricity consumption 
showed an increasing trend for the forecast period (2020 to 2026), 
the electricity demand trend is still low compared to the expected 
electricity production of the same period. Therefore, policy makers 
should take into consideration the electricity consumption trend 
as well as other technological and economic factors influencing 
the electricity demand at the level of planning.
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