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ABSTRACT

This paper examines the impact of climate change (measured as carbon dioxide, nitrous oxide, and methane emissions, as well as temperatures), 
arable land, and sustainable development (measured as Adjusted Net National Income, ANNI) on food security in 86 countries during 2012-2020. To 
this end, Granger non-causality in heterogeneous panels, static and dynamic panel data models, clusterization with elbow and silhouette analysis, as 
well as radar plot visualization. The Food Security Index (FSI) comes from Economist Impact (2022) and the rest of the variables from World Bank 
(2024). The main empirical result from panel data suggest that climate change has a negative effect on FSI, and ANNI measured as Gross National 
Income minus fixed capital consumption and natural resource depletion, used as a proxy of sustainable development, has a positive impact on FSI. 
Moreover, the cluster analysis complements the econometric analysis by identifying structural differences among countries that panel data models might 
overlook. Initially, two clusters are identified: one with only two members, China and the United States, and the other with the remaining countries. 
Subsequently, a cluster analysis is performed removing China and the United States to identify patterns in the rest of the countries. In this case, eight 
clusters are identified that share similar characteristics in the dynamics of all the variables under study, allowing for a more in-depth examination. There 
are now two clusters with only one member, Brazil and Russia. Other cluster contains only G7 countries. The largest cluster includes 31 countries. 
Finally, radar plots allow the specific characteristics of each of the eight groups to be visualized in relation to all the variables under study. Finally, 
the cluster analysis also offers important implications for sustainable policy design, suggesting the need for cluster-specific approaches rather than 
one-size-fits-all solutions.

Keywords: Climate Change, Sustainable Development, Food Security, Panel Data, Cluster Analysis, Radar Plot Visualization 
JEL Classifications: C33, Q51, Q53, O13.

1. INTRODUCTION

Recent studies assess the impact of climate change on global 
food security and crop productivity. Most of these studies 
explore the consequences of climate change on arable land and 
agriculture, with a particular focus on the challenges in vulnerable 
regions in Africa and Asia. These investigations also discusses 
the complexities of mitigating climate-induced disturbances in 
crop growth patterns and the implications of climate change on 
biodiversity, recognizing the interconnectedness of ecological 
systems and the imperative for innovation; the emphasis is on 

ensuring the resilience of global agriculture in the face of climate 
changes (Praveena and Malaisamy, 2024; Chandio et al., 2020; 
Hertel and de Lima, 2020).

The most common way to quantify and monitor climate change is 
by measuring carbon dioxide CO2, nitrous oxide N2O and methane 
CH4 emissions, along with temperatures. In this sense, the carbon 
footprint includes all these emissions and converts them into CO2 
equivalent, which is a useful indicator for assessing the impact of 
human activities on climate change. On the other hand, industrial 
livestock focuses on meat production contributing significantly to 
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CH4 emissions. Therefore, the interaction of climate change, food 
security and sustainable development is an issue relevant importance.

On the other hand, according to the World Food Program (WFP) 
Global Outlook 2025, 343 million people are acutely food insecure 
in 74 countries where WFP operates. It should be noted that there 
has been a 10% increase since 2023, with almost 200 million 
more people than pre-pandemic levels. Nowadays, food security 
has become one of the most relevant issues after the COVID-19 
pandemic and the conflict between Russia and Ukraine in 2022. 
Russia being one of the main food producers, it produces around 
40% of crops of the total agricultural production, and 60% of 
livestock including wool, meat and dairy production. Russia is also 
the third largest producer of potatoes, the fourth largest producer 
of wheat, and the twelfth largest producer of corn.

Today food security has become a priority on national and 
international political agendas. It is supposed to be one of the most 
pressing challenges in most of nations, since food security implies 
one of the main factors of the well-being of the population. The 
term food security emerged after the Second World War and the 
creation of the United Nations. Today there is a wide literature 
dealing with this topic and its relations with other variables such as 
sustainable development and climate change (Swaminathan, 2001; 
Godfray et al., 2010; Lang and Barling, 2012; Berry et al., 2015; 
Kamruzzaman, 2016; Raymond and Goulet, 2020; Lucatello and 
Sánchez, 2022; Salazar-Núñez et al., 2022; Rehman et al., 2022; 
Ivanova and Serrano, 2022; Praveena and Malaisamy, 2024).

Since the 1996 Rome Declaration on World Food Security 
(RDWFS) were defined two basic dimensions, availability and 
utilization, with a focus on nutritional well-being. In this sense, the 
sustainable management of natural resources and the elimination 
of unsustainable patterns of food consumption and production is 
becoming an important issue. In this regard, the World Summit on 
Food Security (2009) added the concept of stability/vulnerability 
as the short-term time indicator of the capacity of food systems 
to withstand crises, whether natural or man-made, as part of the 
Five Rome Principles for Sustainable Global Food Security. 
More recently, the relevance of sustainability to preserve the 
environment, natural resources and agroecosystems has been 
highlighted, as well as the importance of food security as a part 
of sustainability and vice versa (Patra et al., 2025).

From the previous perspective, the concept of sustainable diets can 
play a key role as an objective and way of maintaining nutritional 
well-being and health, while ensuring sustainability for future food 
security. Sustainability must be integrated as an explicit dimension 
of food security, to prevent current policies and programs from being 
the causes of greater food insecurity in the future (Berry et al., 2015). 
The links between sustainability and food security are becoming 
increasingly relevant in current research. Hence, the concept of 
sustainability in the context of food security is gaining importance 
in recent times. Finally, sustainability must be assumed as part of the 
long-term temporal dimension in the assessment of food security.

Food security has naturally been associated with food production, 
hence it is related to the availability of food in the market and linked 

to the ability to purchase or acquire a basic food basket. Therefore, 
food security is associated with nutrition, clean water, healthy 
environment, income, basic health, and educational coverage. 
In this sense, food security is linked to ecological factors that 
determine it in the long term (Swaminathan, 2001). Food security 
is a complex issue, as it is related to a multitude of economic, 
financial, administrative, technological, innovation, ecological, 
social, environmental, political, and many other variables. It is 
worth noting that food security is impacted depending on the time 
horizon, some variables are affected in the short term and others 
in the medium and long term. Hence, food security is one of the 
most important challenges to achieve at the local and international 
level, given its contribution to the well-being of the population 
(Wijekoon and Marikar, 2024).

Moreover, there are two general approaches to food security, on 
the one hand a perspective that is based on the increase in food 
production and focuses on arable land and agriculture, while on 
the other hand, a more complex, considers ecological systems. The 
first approach began after the Second World War, and within a few 
decades it was replaced by the second one, which is more complex 
in an ecological context. Lang and Barling (2012) conclude that it 
is imperative to create a sustainable food system, which demands a 
more relevant policy framework than the one that currently exists. 
Finally, the study by Raymond and Goulet (2020) highlight that 
the interaction between food security and food sustainability with 
science and technology to be democratized through food policies. 
In this sense, knowledge infrastructures show the limitations of 
the models to evaluate and confront the lack of food security.

According to the Sustainable Development Goals (SDGs), one 
of them is to eradicate extreme poverty for all people around 
the world by 2030, so the challenge of food security is urgent to 
contribute to eradicating poverty throughout the planet. In this 
sense, Kamruzzaman (2016) suggests that to achieve the objectives 
the world needs to be consistently peaceful, since poor countries 
require greater commitment and effort to achieve changes in the 
global economic structure, so the eradication of poverty must be 
addressed rigorously.

Furthermore, the links between climate change and food security 
are highlighted by the current variations in the planet’s climate 
affecting the world’s population. In this sense, Godfray et al. (2010) 
state that continued growth in population and consumption will 
mean that global demand for food will increase for at least another 
40 years. Increasing competition for land and water, as well as 
overexploitation of fisheries, will affect the ability to produce food, 
as will the urgent need to reduce the impact of the food system 
on the environment. In this sense, the effects of climate change 
are another threat, but the world can produce more food and can 
ensure that it is used more efficiently and equitably. The authors 
conclude that a multifaceted and linked global strategy is needed 
to ensure sustainable and equitable food security.

The present investigation also carries out a cluster analysis to 
complement the proposed econometric analysis by identifying 
structural differences among the countries in the sample that 
panel data models might fail to notice. This cluster analysis allows 
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for the identification of groups of countries that share similar 
characteristics in the dynamics of all the variables under study, 
allowing for a more in-depth examination. Hence, cluster analysis 
will be used as an alternative research framework to complement 
the investigation about the interactions among sustainable 
development, climate change, and food security in 86 countries. 
Cluster analysis is commonly used as a fitting multivariate 
statistic because of its ability to identify inherent groupings among 
countries based on various simultaneous similarities (Mooi et al., 
2018). Mainly, the use of the k-means clustering algorithm has 
been based on its efficacy in sustainability research regarding 
pattern identification among countries in terms of environmental 
and economic indicators (Xu and Wunsch, 2010; Lin et al., 2022).

This research differs from the current literature in the following 
ways: (1) it focuses on a large sample of 86 economies, (2) 
it considers greater availability of data compared to the past, 
allowing for a greater number of countries, variables and 
periods, (3) it estimates cointegration, Granger non-causality 
in heterogeneous panels, and dynamic panel data models, (4) 
it corrects multicollinearity and autocorrelation problems, (5) 
it carries out a cluster analysis to complement the econometric 
analysis by identifying structural differences among countries 
that panel data models might overlook, and (6) it finds patterns 
in clusters that share similar characteristics in the dynamics of all 
the variables under study.

The rest of the document is organized as follows: Section 2 
provides a short literature review; Section 3 presents the nature 
of the data, the descriptive statistics and the graphical analysis of 
the data; Section 4 deals with cointegration, Granger causality 
and panel data analysis; Section 5 carries out a cluster analysis 
to complement the econometric analysis by clarifying structural 
differences among countries; Section 5 presents the analysis and 
discussion of the main empirical results; finally, Section 6 presents 
the conclusions, acknowledges the limitations, and offers some 
policy recommendations.

2. A SHORT LITERATURE REVIEW

The interaction among sustainability, climate change and food 
security is analyzed in various investigations. For instance, 
Bongiovanni and Lowenberg-Deboer (2004) study the role 
of precision agriculture in helping to manage crop production 
inputs in an environmentally friendly way. By using site-specific 
knowledge, precision agriculture can determine rates of fertilizers, 
seeds and chemicals for soil and other conditions. It is worth 
mentioning that precision agriculture substitutes information and 
knowledge for physical inputs, it can contribute in many ways to 
the long-term sustainability of production agriculture. In this sense, 
precision agriculture should reduce environmental load through 
optimal application of fertilizers and pesticides, decrease chemical 
load, and can contribute to better environmental management.

On the other hand, Lobell et al. (2011) analyze the effect of climate 
change on future food availability, finding that in the cropping 
regions and growing seasons of most countries and temperature 
trends exceeded one standard deviation of historical inter-annual 

variability from 1980 to 2008. Their analysis of linking yields of 
the four major staple crops to climate indicate that global maize 
and wheat production declined by 3.8% and 5.5%, respectively, 
relative to a contractual scenario with no climate trends. For 
soybeans and rice, the winners and losers were largely balanced. 
Climate trends were large enough in some countries to offset 
a significant portion of the increases in average yields arising 
from technology, carbon dioxide fertilization, and other factors. 
Likewise, Vermeulen et al. (2012) suggest that food systems 
contribute between 19% and 29% of global greenhouse gas (GHG) 
emissions. Agricultural production, including indirect emissions 
associated with land cover change contributes between 80% and 
86% of total food system emissions. The authors warn that the 
impacts of global climate change on food systems are widespread, 
complex, geographically and temporally variable, as well as deeply 
influenced by socioeconomic conditions. These authors also state 
that climate change will affect agricultural yields and incomes, 
food prices and, in particular, food security. Also, these authors 
indicate that low-income food producers and consumers will be 
more vulnerable to climate change due to their comparatively 
limited capacity to invest in adaptive technologies and suggest 
synergies among food security, adaptation and mitigation. 
Likewise, Wheeler and Braun (2013) study the role of climate 
change in progress towards a world without hunger, highlighting 
that the stability of food systems as a whole may be at risk due 
to climate change and variability in supply in the short term; 
however, they emphasize that the potential impact is less clear 
at the regional scale, but climate change may exacerbate food 
insecurity in areas currently vulnerable to hunger and malnutrition. 
Finally, the authors suggest the need for considerable investment 
in adaptation and mitigation actions to achieve a climate-smart 
food system that is more resilient to the influences of climate 
change on food security.

On the other hand, Garnett et al. (2013) examine the challenges 
posed by climate change to agriculture and food security in 
developing countries, highlight that many current agricultural 
practices damage the environment and are becoming a major 
source of GHG, and conclude that food insecurity in a region can 
have widespread political and economic ramifications worldwide 
in an increasingly globalized world. Likewise, Lipper et al. (2014) 
study the role of climate-smart agriculture in transforming and 
reorienting agricultural systems to support food security in the 
context of the new realities of climate change, highlighting that 
climate-smart agriculture promotes coordinated actions by farmers, 
private sector, civil society and policy makers towards climate-
resilient pathways. Finally, reorienting agricultural systems to 
support food security increases local institutional effectiveness, 
promotes coherence between climate and agricultural policies, 
linking climate and agricultural financing.

Similarly, Ebert (2014) investigates the role of underutilized 
vegetables and leguminous crops in achieving nutritional security, 
highlighting that significant research, breeding and development 
efforts are needed. The author finds that underutilized crops such as 
amaranth, drumstick and mung bean have demonstrated potential 
for wider adoption and commercial exploitation. Moreover, 
Vervoort et al. (2014) analyze food security in the context of 
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climate change in East Africa, concluding that long-term viability 
and sustainability could be ensured if decision-makers took 
ownership of the process and focused on developing strategic 
planning capacity within their local organizations. Finally, 
Dawson et al. (2016) examine the effects of climate change on 
the United Nations Objectives of eradicating poverty and hunger; 
however, the rapid growth of the world population, coupled with 
global climate change have negative effects on food security. 
The authors estimate food exports, assess diets and malnutrition, 
determine average calories per capita, and state the degree of 
inequality in food access. Finally, they determine calorific values 
of food, asses crop yields and examine population changes under 
socioeconomic and climate change scenarios for 2050, 2085 and 
2100. These authors project that in a scenario without climate 
change based only on projected changes in population and 
agricultural land use, the results show that 31% (2.5 billion people 
in 2050) of the world’s population is at risk of malnutrition if no 
agricultural adaptation or innovation is made in the intervening 
years. In a second scenario, 21% (1.7 billion people) are at risk of 
malnutrition in 2050 when climate change is taken into account. 
However, their modeling does not take into account future trends in 
technology, improved crop varieties or interventions in agricultural 
trade, although it is clear that all of these adaptation strategies 
will need to be adopted on a global scale if society is to ensure an 
adequate food supply for a projected world population of more 
than 9 billion people.

On the other hand, Terry et al. (2017) analyze the impact of 
population growth and climate change on food security in Africa 
by 2050. They find the prevalence of malnutrition in 44 African 
countries and population growth as the main cause of food 
insecurity and malnutrition, they suggest different adaptation 
alternatives: Increasing yield through sustainable intensification 
and increasing imports with trade agreements to prevent food 
insecurity in the future. Later, Mechiche-Alami (2020) studies 
the role of national large-scale land acquisition policies and 
agricultural intensification programs in food security in Africa. 
The author concludes on the risks of prioritizing productivity 
policies that are incapable of providing accessibility to food in 
Africa, which only benefits transnational and national elites at the 
expense of small farmers. Finally, the author suggests agroecology 
as a potential alternative to sustainably improve food security on 
the African continent.

Moreover, Guiné et al. (2021) assess the relationship between food 
security and sustainability, considering statistical information for 
the various dimensions of food security during the period 2000-
2020. The authors conclude that malnutrition is more affected 
by the availability of food and nutrients than political stability, 
and that the level of development is not the main explanation for 
nutrition problems. They suggest that agri-food supply chains 
should be improved and political stability supported to mitigate 
malnutrition worldwide and ensure global access to sustainable 
and healthy diets. In this sense, Laurett et al. (2021) study 
several determinants of sustainable development in agriculture 
in Brazil as natural agriculture, innovation and technology and 
environmental aspects. The authors identify different associated 
elements of sustainable development in agriculture such as external 

influencers, commitment to sustainability, concern for future 
generations, environmental motivators, individual characteristics, 
socio-environmental benefits and subjective well-being.

Likewise, Wahben et al. (2022) analyze the factors that promote 
food security and the sustainability of future food production 
(environmental, social and economic). They carry out an 
exhaustive study of the literature on food security, its determinants 
and policies. The authors find that the policies that stand out are 
those to mitigate food loss and waste. The authors also suggest 
including environmental indicators and policies, consumer 
representation and the entire supply chains in the Global Food 
Security Index (GFSI). Furthermore, they conclude that food 
security is a complex issue and demands multidisciplinary 
interventions. Finally, Viana et al. (2022) review the literature on 
Sustainable Development Goals (SDG 2 – zero hunger) and food 
security, analyzing many investigations on the topic, revealing that 
most of these investigations were published between 2015 and 
2019 (59%), and most case studies were conducted in Asia (36%) 
and Africa (20%). Over the past 30 years, most research focused 
on six main research fields: land use change (28%), agricultural 
efficiency (27%), climate change (16%), farmer motivation (12%), 
urban and peri-urban agriculture (11%) and land suitability (7%).

Moreover, Moon (2024) examines the effects of climate change 
on food security of vulnerable groups in Bangladesh. The author 
highlights the significant risks that climate change poses to food 
security in Bangladesh and vulnerable women, including increased 
susceptibility to food shortages and post-disaster problems. In 
this case, women in Bangladesh are more susceptible to these 
problems due to their social, economic and political circumstances, 
concluding that women are negatively affected by climate change. 
The author also suggests implementing policies to improve regional 
agricultural production and strengthen resilience to climate change. 
More recently, Wijekoon and Marikar (2024) explore the role of 
the Sri Lankan Army in improving food security influenced by 
climate change, agricultural practices and social dynamics in the 
country. The authors also examine the potential contributions of the 
military in terms of food production, infrastructure development, 
and technology, highlighting the importance of collaboration, 
knowledge transfer, and sustainable practices to achieve lasting 
food security. Hence, through collaborative efforts involving 
multiple stakeholders, including government agencies, local 
communities, and agricultural organizations, a more resilient and 
secure food system for the country can be imagined.

Finally, Cluster analysis is commonly used as a fitting multivariate 
statistic because of its ability to identify inherent groupings among 
countries based on various simultaneous similarities (Mooi et al., 
2018). Mainly, the use of the k-means clustering algorithm has 
been based on its efficacy in sustainability research regarding 
pattern identification among countries in terms of environmental 
and economic indicators (Xu and Wunsch, 2010). The k-means 
algorithm works by dividing observations into k groups in an 
attempt to minimize the within-cluster sum of squares (Lloyd, 
1982). In cluster analysis, the elbow method evaluates the 
relationship between the within-cluster and cluster size, and the 
silhouette analysis measures how well every country is assigned 
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to its cluster to other clusters, hence giving a measurement of 
cluster cohesion and separation (Kodinariya and Makwana, 2013; 
Madhulatha, 2011).

3. NATURE OF THE DATA, DESCRIPTIVE
STATISTICS AND GRAPHICAL ANALYSES

The data used in this research is obtained from Economist Impact 
(2022) and World Bank (2024). The Food Security Index (FSI) is 
made up of 68 indicators that measure variables that encourage 
food security in both developed and developing countries and is 
available on the Economist Impact website. The FSI considers food 
affordability, food quality and food safety, as well as sustainability. 
On the other hand, from the World Bank data (2024) is obtained 
the Adjusted Net National Income (ANNI) measured as Gross 
National Income minus fixed capital consumption and natural 
resource depletion in constant 2010 US dollars and is used as a 
proxy variable for sustainable development. Likewise, carbon 
dioxide (CO2), nitrous oxide (N2O) and methane (CH4) emissions 
are given in kt (thousand tons) of CO2 equivalent. It should be 
noted that the emission of 1 kg of N2O equals 298 kg of CO2 
equivalent, and the emission of 1 kg of methane (CH4) is equal 
to 25 kg of CO2 equivalent. Finally, temperature data is given in 
degrees Celsius, and arable land is expressed as a percentage of 
total land.

The study period is restricted to the availability of data, so variables 
correspond to the period 2012-2020. This research uses the same 
number of observations for all variables for all countries. The 
panel includes 86 economies: Algeria, Angola, Argentina, Austria, 
Azerbaijan, Bahrain, Bangladesh, Belarus, Belgium, Benin, 
Botswana, Brazil, Bulgaria, Burkina Faso, Burundi, Cambodia, 
Cameroon, Canada, China, Colombia, Congo (Dem. Rep.), Costa 
Rica, Côte d’Ivoire, Czech Republic, Denmark, Dominican Rep., 
Ecuador, Egypt, El Salvador, Ethiopia, Finland, France, Germany, 
Ghana, Greece, Haiti, Hungary, Indonesia, Israel, Italy, Japan, 
Kazakhstan, Kenya, Kuwait, Laos, Madagascar, Malaysia, Mali, 
Mexico, Nepal, Netherlands, New Zealand, Nicaragua, Norway, 
Oman, Pakistan, Paraguay, Peru, Philippines, Poland, Portugal, 
Romania, Russia, Rwanda, Saudi Arabia, Senegal, Serbia, Sierra 
Leone, Slovakia, South Africa, South Korea, Spain, Sri Lanka, 
Sudan, Sweden, Switzerland, Tajikistan, Tanzania, Togo, Tunisia, 
Uganda, Ukraine, United Arab Emirates, United Kingdom, United 
States and Uruguay.

Table 1 shows the variables and notation used in this investigation, 
as well as their averages, standard deviations, and maximum and 

minimum levels. For the sample of the 86 economies, the average 
FSI is 61.56318, the standard deviation is 12.62436, the minimum 
is 32.8 corresponding to Burkina Faso in 2018, and the maximum 
is 84.3 corresponding to Finland in 2020. The average ANNI of the 
sample is 6.36E+11 USD, with a standard deviation of 2.00E+12 
USD, with a minimum of 1.74E+09 USD corresponding to Burkina 
Faso in 2012 and a maximum of 1.71E+13 USD corresponding 
to the USA in 2019. The average CO2 emissions are 746341.3 kt, 
with a standard deviation of 2454226 kt, the lowest emission is 
6.6 kt which corresponding to Togo in 2012, while the highest 
CO2 emission is 1.65E+07 kt corresponding to China in 2020.

Also note, from Table  1, that the average CH4 emissions are 
65275.73 kt of CO2 equivalent with standard deviation 161738.6 
kt, the lowest emission is 1009.982 kt corresponding to Burundi 
in 2012, while the maximum CH4 emissions are 1186285 kt 
corresponding to China in 2020. The average N2O emissions 
are 24718.78 kt with standard deviation 65833.55 kt, the lowest 
emission is 124.8322 kt corresponding to Bahrain in 2012, while 
the maximum N2O emission is 551682.8 kt corresponding to China 
in 2016. The average temperature in all 86 countries is 18.35156°C 
with standard deviation 7.690974°C, the minimum is −0.085°C 
corresponding to Canada in 2014, and the maximum is 29.13°C 
corresponding to Mali in 2016. The percentage of arable land has 
an average of 18.32445% with standard deviation 14.81341%, the 
minimum is 0.1088853% corresponding to Oman in 2012, and the 
maximum is 60.8% corresponding to Serbia in 2015.

Below are the results of a sequence of graphical analyses that relate 
the dependent variable, FSI, with CO2, N2O, CH4 emissions, as 
well as temperatures, arable land and ANNI in the 86 economies. 
Figure 1 shows the dynamics between the logarithm of ANNI and 
the logarithm of FSI. For all the economies analyzed, a positive 
relationship is observed between these variables. In this sense, an 
increase in ANNI is associated with an increase in FSI, as shown 
in Figure 1.

On the other hand, Figure 2 shows the relationship between the 
logarithm of CO2 and the logarithm of FSI in all the economies. 
The results are mixed since there is a group of countries (49%) 
that shows a positive relationship between the logarithms of these 
variables. That is an increase in CO2 emissions is associated with 
an increase in the FSI However, the rest of the countries present a 
negative relationship, i.e., a reduction in CO2 emissions is related 
to an increase in FSI. This is due to structural differences among 
countries and the unique characteristics of each one. To better 
understand this behavior later, in Section 6, a clustering analysis 
will be performed to determine groups of countries that share 

Table 1: Variables, notation and descriptive statistics
Variable Notation Average Deviation Minimum Maximum
Food security index Isa 61.56318 12.62436 32.8 84.3
Adjusted Net National Income Inna 6.36E+11 2.00E+12 1.74E+09 1.71E+13
CO2 Carbono 746341.3 2454226 6.6 1.65E+07
Methane Metano 65257.73 161738.6 1009.982 1186285
N2O Nitroso 24718.78 65833.55 124.8322 551682.8
Temperatura Temperatura 18.35156 7.690974 −0.085 29.13
Arable land Cultivables 18.32445 14.81341 0.1088853 60.8
Source: Authors’ own elaboration with data from Economist Impact (2022) and World Bank (2024)
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similar characteristics in the dynamics of the variables under 
study. Figure 2 shows a first phase, in which an increase in CO2 
emissions is associated with an increase in the FSI in the countries 
studied. A  second phase is appears, in which carbon dioxide 
emissions decrease with an increase in the food security index. 
This last behavior may be related to public policies that promote 
environmental protection, which seek to reduce carbon dioxide 
emissions, greater citizen awareness, or companies’ willingness 
to protect the environment by reducing their GHG emissions.

Likewise, Figure 3 shows the dynamics between the logarithm 
of CH4 emissions and the logarithm of the FSI, for the 
economies explored in this research, a positive relationship 
between the variables is first observed, which indicates an 
increase in the  logarithm of CH4 emissions associated with an 
increase in the logarithm of the FSI, then a negative relationship 
indicating a logarithmic decrease in CH4 emissions associated 
with a logarithmic increase in the FSI. Thus, Figure  3 shows 
the relationship between climate change (proxy for methane 

emissions) and food security. This figure illustrates, on the one 
hand, an increase in CH4 emissions associated with an increased 
FSI. This may be related to the increase in meat production, 
which has a positive impact on food security but causes higher 
CH4 emissions. Second, a negative slope is observed, showing a 
decrease in CH4 emissions and an increased in FSI, suggesting that 
environmental policies and the primary sector’s efforts to reduce 
CH4 emissions are being successful.

On the other hand, Figure 4 reveals the relationship between the 
logarithm of N2O emissions and the logarithm of the FSI for the 
economies analyzed. Initially, a negative relationship is observed 
between the logarithms of these variables and later a positive 
trend appears. An increase in N2O emissions is associated with a 
reduction in the FSI, then an increase in N2O emissions is related 
to an increase in the FSI. Figure  4 shows that N2O emissions 
have not been controlled over time. It is a GHG, more potent 
than CO2 and CH4, and is mainly associated with the agricultural 
sector. N2O emissions have increased by 40% between 1980 and 

Figure 1: Adjusted net national income and food security

Source: Authors’ own elaboration with data from Economist Impact 
(2022) and World Bank (2024)

Figure 2: Carbon dioxide emissions and food security

Source: Authors’ own elaboration with data from Economist Impact 
(2022) and World Bank (2024)

Figure 3: Methane emissions and food security

Source: Authors’ own elaboration with data from Economist Impact 
(2022) and World Bank (2024)

Figure 4: Nitrous oxide emissions and food security

Source: Authors’ own elaboration with data from Economist Impact 
(2022) and World Bank (2024)
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2020, significantly accelerating climate change. Finally note that 
agricultural production also contributes to increased food security.

Below, Figure 5 shows the relationship between the logarithm of 
temperatures and the logarithm of the FSI for the economies in 
the sample. At first, a positive relationship is observed between 
the logarithms of these variables and later a negative one. An 
increase in temperature is associated with an increase in the FSI, 
then a reduction in temperature is related to an increase in the FSI. 
Figure 5 suggests that public policies in the different countries, 
citizen actions, and corporate commitment have slowed global 
warming, which has contributed to increased food security in the 
various countries analyzed.

Finally, Figure 6 shows the relationship between the logarithm of 
the percentage of arable land as a proportion of total land and the 
logarithms of the FSI for the economies under study. A negative 
relationship is observed between the variables indicating that 
countries with higher proportions of arable land are associated 

with lower FSI, which may be related to the fact that countries 
specialized in agriculture are poorer than countries that specialize 
in industry and services, which enjoy higher incomes and food 
purchasing power.

In summary, Figure  1 shows a positive relationship between 
ANNI and FSI. Also, Figures 2, 3 and 5 show that the behavior 
between CO2, CH4, and temperatures with FSI is represented by 
concave curves downwards. On the other hand, Figure 4 shows 
the relationship between N2O emissions with FSI with a tendency 
of a convex curve upwards. Finally, Figure 6 shows a negative 
relationship between arable land and FSI. To better understand 
this behavior of concave and convex trends, a clustering analysis 
will be performed in section 6 to delimit groups of countries that 
share common characteristics in the dynamics of the variables 
under study.

4. COINTEGRATION, GRANGER
CAUSALITY AND PANEL DATA

This section is divided into two parts. The first part is devoted to 
the statistical analysis of the study variables, estimating stationarity, 
cointegration and Granger causality to avoid problems related to 
spurious regressions. The second part presents the main results of 
panel data estimations, both static and dynamic. The purpose is 
to examine the interaction among the FSI, ANNI, CO2, N2O, and 
CH4 emissions, temperatures and arable land for the sample of 86 
countries. The variables are expressed in logarithms: lisa is the 
logarithm of the FSI, linna is the logarithm of the ANNI, lcarbono 
is the logarithm of CO2 emissions, lmethane is the logarithm of CH4 
emissions, lnitroso is the logarithm of N2O emissions, ltemperatura 
is the logarithm of temperatures, and lcultivable is the logarithm of 
arable land. The period analyzed is 2012-2020, which allows having 
86 countries and 9 years. A balanced panel is estimated with the 
Stata package. The main results are expressed in the next section.

4.1. Stationarity
Table 2 shows in row 1 the stationarity of the FSI series, the null 
hypothesis of the existence of a unit root is rejected in levels. Row 
2 indicates stationarity in second differences of ANNI, while rows 
3, 4 and 5 show the stationarity in first differences of CO2, CH4 and 
N2O. Subsequently, row 6 shows that temperatures are stationary in 
levels. Finally, row 7 shows that arable land is stationary in levels.

4.2. Cointegration
Cointegration means that even though the series are not stationary 
at an individual level, a linear combination of two or more time 
series can be stationary, this phenomenon can be conceived as 
the stationary difference between a pair of series. The vector of 
coefficients that create this stationary series is the cointegrating 
vector. Table 3 shows the results of cointegration tests between 
the dependent variable FSI and the explanatory variables. Row 
1 shows that the null hypothesis of no cointegration is rejected, 
therefore the FSI and ANNI series are cointegrated. Row 2 shows 
the results of cointegration between the FSI and CO2 emissions. 
Subsequently, row 3 shows cointegration between the FSI and 
CH4 emissions. On the other hand, row 4 shows cointegration 

Figure 5: Temperature and food security

Source: Authors’ own elaboration with data from Economist Impact 
(2022) and World Bank (2024)

Figure 6: Arable land and food security

Source: Authors’ own elaboration with data from Economist Impact 
(2022) and World Bank (2024)
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between the FSI and N2O emissions. Likewise, row 5 presents the 
cointegration estimates between the FSI and temperatures. Finally, 
row 6 shows cointegration between the FSI and arable land where 
the null hypothesis of no cointegration is rejected and, therefore, 
the series are stationary.

The results of the cointegration estimates indicate that the variables 
are cointegrated, the idea suggests the possible presence of 
causality between the independent variables with the explained 
variable, that is, causality between sustainable development, 
climate change and food security.

4.3. Granger Causality
Granger causality is a fundamental analysis to detect relationships 
between variables. Dumitrescu and Hurlin (2012) propose the 
methodology to estimate Granger’s (1969) causality test for panel 
data. The authors use individual Wald statistics of Granger non-
causality averaged across cross-section units. The test consists 
of establishing the null hypothesis of non-existence of causality 
between two variables, the rejection criterion is based on detecting 
significance levels ≤0.05. Next, causality tests are performed for 
the different variables of interest for this research. Table 4 shows 
the causality tests between all the variables of interest with 1-year 
lag, there are important findings, the ANNI, CO2, CH4, N2O, 
temperatures and arable land Granger-cause the FSI.

The previous results reinforce the research hypothesis that 
sustainable development and climate change are relevant to 
global food security. In summary, derived from this section, 
the cointegration shows a stable relationship among sustainable 
development, climate change and food security, and the Granger 
causality analysis indicates that sustainable development and 
climate change Granger-cause food security.

4.4. Static and Dynamic Panel Data Models
The use of panel data is very useful for applied research and 
therefore its use is increasingly frequent. Panel data is a sample 

of characteristics that countries have over time, that is, it is a 
simultaneous combination of time series and cross-sectional data. 
The model to be estimated is as follows:

yit = α + βXit + uit (1)

where yit is the dependent variable, in this case FSI, that changes 
depending on i = 1,…,n (n = 86 the number of countries) and 
t = 1,…,T (T = 9 the number of years), Xit are exogenous variables: 
ANNI, CO2, N2O, CH4, temperatures and arable land, as usual uit 
are random disturbances. Ordinary Least Squares (OLS) estimates 
will be biased as stated by Nickell (1981) and Arellano and Bover 
(1990), even for samples with large values of n and when T is 
small, in this case n = 86 y T = 9. To avoid biases, alternative 
estimates are proposed, such as estimates with dynamic panel data 
models, thus obtaining unbiased, optimal, efficient and consistent 
estimators. The use of panel data has several advantages because 
it examines a greater number of observations with more and better 
information, allowing for a greater number of variables and less 
multicollinearity between data of the explanatory variables, as well 
as greater efficiency in the estimation. It also solves the problem 
of omitted variables, since variables that do not change over time 
can be eliminated by taking differences. The dynamic model to 
be estimated is as follows:

yit = αyit−1 + βXit + uit (2)

Where yit−1 is the lagged dependent variable. For the estimation 
of dynamic panel data, the Generalized Method of Moments 
(GMM) of Arellano and Bover (1995) is used. The GMM system 
estimator uses difference equations that are instrumentalized with 
the lags of the level equations, and also links instrumentalized 
level equations with the lags of the difference equations (Bond, 
2002). The system GMM estimator establishes relaxed conditions 
to guarantee consistent estimators of the parameters even in 
the presence of endogeneity and with unobserved individual-
country effects. This approach was developed by Arellano and 
Bover (1995), and later includes improvements that were made 
by Blundell and Bond (1998). The estimator thus obtained has 
advantages over estimators such as Fixed Effects and others, since 
it estimates unbiased parameters in small samples or in the presence 
of endogeneity. The optimal GMM estimator consists of a system 

Table 4: Dumitrescu and Hurlin (2012) Granger 
non‑causality test 
Lag Hipothesis P‑value Observations
Lag order: 1 Linna does not 

Granger‑cause lisa
0.0000 H0 is rejected

Lcarbono does not 
Granger‑cause lisa

0.0000 H0 is rejected

Lmetano does not 
Granger‑cause lisa

0.0083 H0 is rejected

Lnitroso does not 
Granger‑cause lisa

0.0000 H0 is rejected

Temperatura does not 
Granger‑cause isa

0.0000 H0 is rejected

Lcultivable does not 
Granger‑cause lisa

0.0017 H0 is rejected

Source: Authors’ own elaboration with data from Economist Impact (2022) and World 
Bank (2024), Stata

Table 2: Unit root tests
Variable Series P‑value Observations
1 Isa 0.0077 H0 is rejected
2 D2.inna 0.0000 H0 is rejected
3 D.carbono 0.0000 H0 is rejected
4 D.metano 0.0000 H0 is rejected
5 D.nitroso 0.0000 H0 is rejected
6 Temperatura 0.0000 H0 is rejected
7 Cultivable 0.0000 H0 is rejected
H0: Panels contain unit roots. Source: Authors’ own elaboration with data from 
Economist Impact (2022) and World Bank (2024), Stata

Table 3: Cointegration estimates
Estimates Series P‑value Test
1 Linna and lisa 0.0020 H0 is rejected
2 Lcarbono and lisa 0.0007 H0 is rejected
3 Lmetano and lisa 0.0093 H0 is rejected
4 Lnitroso and lisa 0.0126 H0 is rejected
5 Ltemperatura and lisa 0.0007 H0 is rejected
6 Lcultivable and lisa 0.0050 H0 is rejected
H0: No Cointegration. Source: Authors’ own elaboration with data from Economist 
Impact (2022) and World Bank (2024), Stata
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consisting of a regression that jointly contains information in levels 
and in differences in terms of moment conditions (Arellano and 
Bover, 1995).

Next, results of both static and dynamic panel data estimations 
are shown. Table 5 presents the estimates of static panel data 
models: Ordinary least squares (OLS), cross section (BS), 
fixed effects (FE) and random effects (RE). The first column 
of the table shows that the dependent variable is the logarithm 
of the FSI, and all the independent variables are in logarithms, 
the constant, the coefficient of determination R2, the Lagrange 
Multiplier test, the Hausman test, and the number of countries and 
observations. The second column of the Table 5 shows the OLS 
estimation which indicates that the coefficients of linna, lcarbono, 
lmetano, lcultivable and the constant are significant, while the 
coefficients of lnitroso and ltemperatura are not significant, 
finally the coefficient of determination R2 is 0.5519. The third 
column shows the cross-sectional BE estimates, the coefficients 
of linna and ltemperatura are significant, while the coefficients 
of the rest of the variables are not statistically significant; here 
the coefficient of determination R2 is 0.6310. The fourth column 
presents the estimates by FE, the coefficients of linna, lcarbono, 
lnitroso, lcultivable and the constant are significant, while the 
coefficients of methane and ltemperatura are not significant, 
the coefficient of determination R2 is 0.3567. The fifth column 
shows the estimation by RE, the coefficients of linna, lmetano, 
lcultivables and the constant are significant, while the coefficients 

of lnitroso and ltemperatura are not significant, the coefficient of 
determination R2 is 0.5519.

The Lagrange Multiplier test is also presented, which yields a prob 
> chi2 = 0.0000, If the test is not rejected, there is no difference
between OLS and RE, and it is preferable to use the OLS method. 
In this case, the null hypothesis is rejected indicating that the RE
estimate is preferable to the OLS estimate. The Hausman test is
then presented with prob > chi2 = 0.0000, the null hypothesis
is rejected, indicating that the FE and RE estimators differ
systematically and, therefore, the FE model is preferable. The null 
hypothesis of Hausman’s test is that the RE and FE estimators
do not differ substantially, if the null hypothesis is rejected, as in
this case, FE is appropriate. In order to mitigate autocorrelation
problems, dynamic panel data models are estimated; the main
results are shown in Table 6. The estimates of dynamic panel data 
models are presented: Generalized Method of Moments (GMM)
in differences in one stage and in two stages, GMM system in one
stage and in two stages. The first column presents the dependent
variable, the independent variables, the first and second order
serial autocorrelation tests, and the Sargan test. The second column 
shows the estimation by GMM in differences in one stage, where
only the lisaL1 coefficient is significant at 5%. The third column
shows the estimation by GMM in two-stage differences, where the
coefficients of lisaL1, lmetano, ltemperatura and the constant are
significant, the first-order serial autocorrelation is admitted and
the second-order serial autocorrelation is rejected, the Sargan test

Table 5: Static panel data estimates
Dependent variable: Lisa OLS BE FE RE
Linna 0.1326165 (0.000) 0.1037076 (0.000) 0.1863675 (0.000) 0.1326165 (0.000)
Lcarbono 0.0116904 (0.000) 1.74e‑06 (0.899) 0.0198728 (0.000) 0.0116904 (0.000)
Lmetano −0.0216765 (0.092) −0.0280671 (0.199) −0.0038592 (0.799) −0.0216765 (0.092)
Lnitroso −0.0180011 (0.230) −0.0348851 (0.113) 0.0895547 (0.000) −0.0180011 (0.230)
Ltemperatura 0.0032746 (0.765) −0.0503539 (0.033) 0.0084504 (0.466) 0.0032746 (0.765)
Lcultivable 0.0358637 (0.004) 0.0019201 (0.895) 0.0643236 (0.019) 0.0358637 (0.004)
Constant 0.8845546 (0.000) 2.186384 (0.000) −1.800254 (0.000) 0.8845546 (0.000)
R2 0.5519 0.6310 0.3567 0.5519 
ML BP Prob>Chi2=0.000
Hausman test Prob>Chi2=0.000
Number of countries 86 86 86 86
Number of observations 772 772 772 772
Source: Authors’ own elaboration with data from Economist Impact (2022) and World Bank (2024), Stata

Table 6: Dynamic panel data estimates with GMM
Dependent variable: Lisa GMM 

differences (one stage)
GMM 

differences (two stages)
GMM 

system (one stage)
GMM 

system (two stages)
LisaL1 0.7160727 (0.000) 0.7326047 (0.000) 0.6522521 (0.000) 0.7211535 (0.000)
Linna 0.0265567 (0.333) 0.0321352 (0.079) 0.0439288 (0.000) 0.036371 (0.000)
Lcarbono 0.0054623 (0.781) −0.008681 (0.508) 0.0043475 (0.363) −0.0034999 (0.444)
Lmetano −0.0786552 (0.138) −0.1056516 (0.000) −0.0299939 (0.374) −0.0504645 (0.012)
Lnitroso 0.0249854 (0.534) 0.0231674 (0.251) 0.0306109 (0.249) 0.027595 (0.097)
Ltemperatura −0.0123598 (0.335) −0.0178474 (0.000) −0.0104794 (0.388) −0.0175947 (0.000)
Lcultivable −0.0210777 (0.626) −0.010355 (0.699) 0.0067133 (0.758) −0.0327921 (0.021)
Constant 1.084793 (0.063) 1.300772 (0.001) 0.3070238 (0.073) 0.6539753 (0.000)
First‑order serial correlation ‑‑‑ Prob>Z = 0.0002 ‑‑‑ Prob>Z = 0.0001
Second‑order serial correlation ‑‑‑‑ Prob>Z = 0.5381 ‑‑‑‑ Prob>Z = 0.5102
Sargan test Prob>Chi2=0.0834 Prob>Chi2=0.4131 Prob>Chi2=0.0650 Prob>Chi2=0.2464
Number of countries 86 86 86 86
Number of observations 598 598 686 686
Source: Authors’ own elaboration with data from Economist Impact (2022) and World Bank (2024), Stata
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admits the validity of the instruments and the correct specification 
of the model.

Likewise, the fourth column presents the one-stage system by 
GMM, where the coefficients of lisaL1 and linna are significant, 
while the coefficients of the rest of the explanatory variables are 
not significant. The fifth column shows the two-stage system by 
Generalized Method of Moments, where the coefficients of lisaL1, 
linna, lmethane, ltemperatura, lcultivable and the constant are 
significant, the first-order serial autocorrelation is not rejected and 
the second-order serial autocorrelation is rejected, the Sargan test 
admits the validity of the instruments and the correct specification 
of the model. Table 7 is presented below, the best-fitting model, 
with all the significant coefficients and with the expected signs, 
the first-order serial autocorrelation is admitted, the second-order 
is rejected, the correct specification of the model is admitted.

4.5. Discussion of Panel Data Results
The estimates indicate that the logarithm of the FSI shows a 
positive relationship with the lagged logarithm of the food 
security index and with the logarithm of ANNI, on the other 
hand, the logarithm of the FSI shows a negative relationship 
with the logarithm of temperatures. The model estimated in two-
stage GMM system indicates that a 1% increase in ANNI will 
have an impact of 3.85719% on the FSI, while a 1% increase in 
temperatures causes a decrease of 1.68229% in the FSI in the 
whole sample. In summary, empirical evidence shows that ANNI 
has a positive impact on the FSI, that is, sustainable development 
has a positive impact on food security. Moreover, increasing 
temperature has negative effects on the FSI, that is, climate change 
has negative effects on food security. This supports the interaction 
of sustainable development, climate change, and food security. The 
two-stage system GMM estimation is the model that best explains 
the relationship between ANNI, temperatures and the FSI.

5. CLUSTER ANALYSIS

Cluster analysis will be used as an alternative research framework 
to investigate the interactions among sustainable development, 
climate change, and food security for the 86 countries. Cluster 
analysis is used as a fitting multivariate statistic because of its 
ability to identify inherent groupings among countries based on 
various simultaneous similarities (Mooi et al., 2018). Mainly, the 
use of the k-means clustering algorithm has been based on its 
efficacy in sustainability research regarding pattern identification 

among countries in terms of environmental and economic 
indicators (Xu and Wunsch, 2010). The k-means algorithm works 
by dividing observations into k groups minimizing the within-
cluster sum of squares (WCSS) that is represented as:

WCSS x
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Where Ci is the ith cluster, x is an observation (country) in that 
particular cluster, and i is the centroid of cluster Ci (Lloyd, 
1982). To minimize this function, the algorithm creates clusters 
where each group of countries has maximum internal similarity 
and a maximum difference with other nations located in other 
clusters. The data preprocessing that preceded running the k-means 
algorithm involved a normalization process to optimize results. 
Since the seven variables under study had very diverse scales that 
ranged from percentages for arable land to trillions of USD for 
ANNI and millions of kilotons for emissions, normalization had 
to be used to prevent large-magnitude variables from affecting the 
process of clustering (Kassambara, 2017). Z-score normalization 
is carried out by applying z = (x−)/, where x represents the 
original value of a variable for a given country,  is the mean of 
that variable across all countries, and σ is the standard deviation 
for all countries. After normalization, the optimal cluster size is 
determined using two more approaches: the elbow method and 
silhouette analysis (Kodinariya and Makwana, 2013). The elbow 
method evaluates the relationship between the within-cluster sum 
of squares and cluster size and picks out at what point adding more 
clusters provides decreasing returns. On the other hand, silhouette 
analysis measures how well every country is assigned to its cluster 
to other clusters, hence giving a measurement of cluster cohesion 
and separation. The silhouette value for a particular country i:
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Where a(i) refers to the average distance between country i and 
other countries in the same cluster, and b(i) refers to the average 
distance between country i and its closest neighboring cluster 
(Rousseeuw, 1987). The average silhouette width for all countries 
is used to measure cluster effectiveness and ranges from −1 to 
1; higher values indicate better separation between clusters. The 
findings of the optimization analysis are presented in Figure 7. 
The left panel of Figure  7 shows the WCSS as a function of 
cluster numbers, representing the elbow technique. The right 
panel displays silhouette values for different cluster numbers. 
The graph of WCSS displays a clear elbow at k = 2 where the 
value of WCSS goes down from 403.16 at k = 2 to 302.34 at k = 
3, representing a decrease of 25%. After this point, the decreased 
slope is increasingly smaller.

The silhouette analysis in the right panel of Figure 7 confirms a 
peak silhouette value of 0.73 at k = 2. This result reflects high 
cohesion within the clusters and good separation between them. 
Considering configurations with more than a significant cluster 
number (k = 4 and k = 5), the resulting silhouette values are 
moderately reduced at 0.32 and 0.31, respectively, much less than 
that found at k = 2. Combining the results of both approaches as 

Table 7: Best model
Dependent variable: Lisa GMM system (two stages)
LisaL1 0.7026126 (0.000)
Linna 0.0385719 (0.000)
Ltemperatura −0.0168229 (0.000)
Constant 0.299228 (0.001)
First‑order serial correlation Prob>Z = 0.0001
Second‑order serial correlation Prob>Z = 0.4910
Sargan test Prob>Chi2=0.4193
Number of countries 86
Number of observations 686
In parentheses the corresponding standard error. Source: Authors’ own elaboration with 
data from Economist Impact (2022) and World Bank (2024), Stata
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presented in Table 8, k = 2 is most appropriate for cluster numbers 
for the given data, with an optimal balance between model 
parsimony and explanatory sufficiency. This agrees with current 
advice in cluster research practice (Madhulatha, 2011; Kodinariya 
and Makwana, 2013). The k-means algorithm successfully 
partitioned the sample of 86 nations into two well-differentiated 
clusters with very different features. The mean values for every 
variable by cluster are presented in Table 8. Appendix 1 contains 
the countries belonging to each cluster.

Cluster 1 contains 84 countries (97.7% of the sample) and is 
characterized by relatively lower food security (mean FSI = 
61.28), substantially lower ANNI (358 billion USD), higher CO2 
emissions (763 million tons), lower methane and N2O emissions, 
higher average temperatures (18.49°C), and a slightly higher 
percentage of arable land (18.41%).

Contrasting sharply with this trend is Cluster 2, which contains 
only two members: China and the United States, making it a 
notable outlier in the analysis. This cluster has very high levels of 
food security (mean FSI = 73.56), a very high ANNI (12.3 trillion 
USD), low CO2 emissions (45.4 million tons), as well as very 
high emissions of CH4 (926 million tons) and N2O (399 million 
tons), reduced average temperatures (12.59°C), and relatively 
lower arable land.

5.1. Visual Analysis of Cluster Distributions
Figure  8 displays a radar plot that presents the two groups’ 
standardized profiles, thus capturing a multivariate overview of 
the distinctive profiles that make the groups unique. Figure  8 
successfully communicates a graphical representation of the 
intricate patterns revealed by the cluster analysis, thus facilitating 
easy comparison of the concurrent fluctuations of the seven 
variables across the groups.

The radar plot displays the important differences in the attributes of 
Cluster 1 (in purple) and Cluster 2 (in yellow). Cluster 2, including 

the United States and China, displays a distinctive pentagonal 
shape with significant extensions along the three dimensions of 
ANNI, CH4 and N2O emissions. Standardized values for the two 
nations along these three dimensions are significantly higher than 
those of Cluster 1. Most strikingly, the enormous difference in 
income, with Cluster 2 nearing the maximum normalized value, 
underscores the incredible economic power of the two nations.

The Food Security dimension has high values for Cluster 2, yet 
the level of disparity is not comparable to that found regarding 
economic resources. This result is supported by econometric 
tests showing a positive correlation between ANNI and FSI. It is 
concluded that the high economic progress achieved by China and 
the United States is a factor of greater food security. Notably, while 
nations in Cluster 2 present high methane and N2O emissions, 
their normalized CO2 emissions are lower than those in Cluster 
1. This paradoxical result, backed by scatter plot analyses, can
be explained by differences between the two clusters in terms of
their economies’ structure and energy use efficiency. While being
significant emitters in absolute terms, the United States and China
may show a more efficient use of carbon compared to the economic
performance of some countries in Cluster 1 that have followed
carbon-intensive development paths (Friedlingstein et al., 2024).

The temperature dimension shows that Cluster 2 has lower 
temperatures than Cluster 1, which is consistent with the 
geographical locations of China and the United States in temperate 
climatic regions. Conversely, many countries in Cluster 1 are 
in tropical and desert regions with high average temperatures. 
This difference may partially explain the higher levels of food 
security in Cluster 2, as extreme temperatures are known to harm 
agricultural productivity (Ortiz-Bobea et al., 2021).

The characteristic of arable land suggests that the two groups have 
comparatively similar standardized scores, meaning that the ratio of 
land used for farming cannot be a differentiating factor. As a result, 
it suggests that the quality and effectiveness of land use, as opposed 

Figure 7: Elbow and silhouette analysis

Source: Authors’ elaboration

Table 8: Clustering and centroid results
Cluster Food security index Adjusted net national income CO2 Methane N2O Temperature Arable land
Cluster 1 61.28 357579495315.89 763029.90 44759.89 15807.71 18.49 18.41
Cluster 2 73.56 12333024062682.40 45420.07 926166.98 398983.49 12.59 14.54
Source: Authors’ elaboration
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to the mere area of land available, could have a more important 
function in explaining differences in the level of food security.

The radar plot, in Figure  8, is a key tool for presenting the 
intricate, multi-dimensional relationships between sustainable 
development, indicators of climate change, and food security. The 
different configurations of the two groups emphasize the varying 
modes of interaction about economic resources, greenhouse gas 
emissions, and climatic conditions among the two groups of 
nations, thus demonstrating trends that could remain hidden with 
univariate or bivariate analyses. The vast discrepancies among 
the geometries of the two groups also support the contention that 
China and the United States operate under significantly different 
conditions regarding the dynamics of sustainable development, 
climate change, and food security compared to the global scale. 
The extensive economic resources owned by these nations offer 
a protective shield against the potentially harmful effects of high 
methane and nitrous oxide emissions on the security of foods. This 
trend is absent in most other nations (Fan et al., 2021).

5.2. Cluster Analysis Removing China and USA
After identifying the unique roles of China and the United States, 
another cluster analysis is carried out on the remaining group of 
84 countries to examine more complex patterns. Figure 9 presents 
the optimization results relevant to the overall analysis. The 
elbow method (left plot) discloses a more subtle trend than the 
first analysis, with a sharp decline from 2 to 4 groups and a muted 
decline thereafter. The silhouette analysis (right plot) shows best 
values at k = 5 (0.293) and k = 8 (0.304), suggesting significant 
groupings at the indicated levels.

Considering the methods utilized and the nature of the results 
achieved, the eight-cluster solution was chosen for the next step 
of the analysis. It produces a more precise typology of country 
profiles with the added advantage of having good silhouette 
scores. The eight-cluster solution identifies discrete groupings 
of nations with different profiles across the seven variables of 
concern presented in Table 9. Countries included in each group 
are presented in Appendix 2.

Cluster 1 has 23 countries with high food security (73.02), medium 
income (422 billion USD), medium CO2, and low methane and 
N2O emissions, combined with cooler climates (11.72°C) and 
medium shares of arable land (15.37%). Developed European 
countries and industrialized economies like Austria, Finland, 
Italy, the Netherlands, New Zealand, Norway, South Korea, and 
Switzerland comprise this category.

Cluster 2 (31 countries): Low food security (53.12), low income 
(113 billion USD), moderate CO2 emissions, low-to-moderate 
methane and N2O emissions, high temperatures (24.74°C), 
and low arable land (11.30%). This cluster comprises mainly 
developing countries in Africa, the Middle East, and Southeast 
Asia, including Algeria, Angola, Ethiopia, Kenya, Kuwait, 
Madagascar, and Saudi Arabia.

Cluster 3 (Brazil): Moderate food security (66.68), low income 
(44.2 billion USD), very low CO2 emissions, very high methane 
(438,255 kt) and N2O emissions (175,325 kt), high temperatures 
(24.82°C), and low arable land (6.55%). Brazil stands alone due 
to its unique combination of moderate food security despite high 
emissions from agriculture and deforestation.

Figure 8: Radar plot for clustering

Source: Authors’ elaboration

Figure 9: Elbow and silhouette analysis excluding China and the United States

Source: Authors’ elaboration
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Cluster 4, which has four countries, exhibits a moderate food 
security level (62.10), a low-income level (55.6 billion USD), very 
high CO2 emissions (10,983,355 kt), low emissions of methane 
and N2O, high-temperature averages (23.39°C), and low arable 
land (7.24%). This small cluster includes Côte d’Ivoire, Ecuador, 
Oman, and Uruguay and is characterized by extremely high carbon 
emissions compared to economic productivity.

Cluster 5 (4 countries): Very high food security (77.24), very high 
income (2.73 trillion USD), moderate CO2 emissions, moderate 
methane and N2O emissions, cool temperatures (11.68°C), 
and high arable land (25.99%). This cluster comprises major 
European economies and Japan: France, Germany, Japan, and 
the United Kingdom.

Cluster 6, which has 14 countries, is defined by low food 
security (55.64), low-income level (57.6 billion USD), medium 
carbon dioxide emission, very low methane and nitrous oxide 
emissions, mean temperatures (17.55°C), and high percentage 
of arable land (43.13%). This cluster includes countries with 
agricultural potential but with food security constraints, such as 
Bangladesh, Belgium, Bulgaria, Denmark, Hungary, Romania, 
and Ukraine.

Cluster 7  (6 countries): Moderate food security (58.66), high 
income (616 billion USD), high CO2 emissions, high methane and 
N2O emissions, moderate temperatures (17.22°C), and moderate 
arable land (15.39%). This cluster includes large economies 
with significant agricultural and industrial sectors: Argentina, 
Cameroon, Canada, Indonesia, Mexico, and Pakistan.

Cluster 8 (Russia): Moderate food security (66.33), high income 
(1.12 trillion USD), moderate CO2 emissions, very high methane 
emissions (587,615 kt), moderate N2O emissions, very low 
temperatures (2.59°C), and low arable land (7.43%). Russia 
forms its cluster due to its unique combination of extreme cold, 
high methane emissions, and moderate food security despite 
challenging climatic conditions.

5.3. Visual Analysis of Cluster Distributions Excluding 
China and the United States
The radar plot in Figure 10 displays the specific features of each of 
the eight clusters in comparison to the seven normalized variables 
under study.

The radar plot for the clustering analysis in Figure 10, excluding 
China and the United States, provides the following results:

a) Economic-food security relationship: Clusters with higher
normalized income values (Clusters 5 and 7) also tend to show
higher food security, reinforcing the positive relationship in
the econometric analysis.

b) Different groups have different emission patterns. Cluster 3,
Brazil, and Cluster 8, Russia, have high methane emissions,
and Cluster 4 shows relatively high CO2 emissions. These
show that policies to address climate change mitigation need
to be tailored to suit the unique characteristics of a particular
country.

c) Temperature-food security relationship: Clusters with
the highest food security (Clusters 1 and 5) have lower
temperatures, while clusters with the lowest food security
(Clusters 2 and 6) tend to have higher temperatures, supporting
the negative temperature-food security relationship found in
the econometric analysis.

d) Cluster 6 has a very high measure for arable land but, at the
same time, shows relatively low food security levels. The
finding suggests that access to land alone does not guarantee

Table 9: Clustering and centroids results excluding China and the United States
Cluster Food security index Adjusted Net national income CO2 Methane N2O Temperature Arable land
Cluster 1 73.0 422076707297.9 162197.2 17558.7 7832.1 11.7 15.4
Cluster 2 53.1 113173196675.4 257862.5 32747.2 10943.8 24.7 11.3
Cluster 3 66.7 44190231919.9 19956.5 438255.1 175325.5 24.8 6.5
Cluster 4 62.1 55610355590.2 10983355.1 19028.4 4380.5 23.4 7.2
Cluster 5 77.2 2733192851666.8 81863.5 48505.9 30783.5 11.7 26.0
Cluster 6 55.6 57602925111.8 339606.3 13395.9 7498.2 17.6 43.1
Cluster 7 58.7 615884260119.4 543553.4 142877.8 54039.2 17.2 15.4
Cluster 8 66.3 1119394668514.8 73597.6 587615.2 63261.1 2.6 7.4
Source: Authors’ elaboration

Figure 10: Radar plot for clustering excluding China and the 
United States

Source: Authors’ elaboration
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food security if economic resources and efficient agricultural 
methods are lacking.

Complete cluster analysis yields more complex patterns than the 
initial two-cluster solution. While the China-US cluster remains 
prominent with its great economic size, the more sophisticated 
examination finds excellent differences in how different groups of 
nations prioritize economic development, environmental issues, 
and food security. These findings emphasize the need for policy 
intervention attuned to the unique needs and opportunities faced 
by different groups of nations.

5.4. Discussion of Cluster Results
Cluster analysis identifies a broad hierarchical distinction 
across the international landscape of sustainable development, 
climate change, and food security. At the top level, a striking 
disparity exists between China and the USA (labeled as Cluster 
2 in the initial analysis) and the rest of the world (Cluster 1), 
highlighting the outstanding economic hegemony as well as the 
greenhouse gas emitting patterns of these two nations (Crippa 
et al., 2023). The radar plots (Figures 8 and 10) indicate this 
overarching division, with Figure  8 highlighting the sharply 
divergent profiles of these two economic giants compared to 
the rest of the world.

The significant economic power displayed by the United States and 
China, as measured using the Agricultural Nutritional Index (ANI), 
appears to augment their respective food security indicators, even 
under high CH4 and N2O emissions. The findings also show that 
economic assets can counter climate change’s impacts on food 
stability, in addition to supporting the findings of Fan et al. (2021) 
and Tubiello et al. (2022). The uneven distribution of economic 
resources, as presented in Figure  8, highlights that wealth is 
distributed in two nations only, affecting the development of world 
policies to achieve the goal of food stability.

The exclusion of China and the United States allows a more 
in-depth examination that identifies eight distinct clusters 
(Figure 10), with the first Cluster 1 showing particular diversity. 
The cluster solution with more points allows for the identification 
of several subcategories with distinct features: advanced 
economies with high food security and moderate emissions 
(Clusters 1 and 5), developing economies with low food security 
and varying patterns of emissions (Clusters 2, 4, and 6), and 
exceptional case examples such as Brazil (Cluster 3) and Russia 
(Cluster 8), which are represented as singleton clusters with a 
unique set of variables.

Advanced cluster analysis confirms the correlation of economic 
resources with food security as evidenced by Cluster 5, which 
consists of France, Germany, Japan, and the United Kingdom, with 
the highest food security indexes (77.24) along with high ANNI 
values of 2.73 × 1012 USD. However, the research identifies that 
the correlation is not simple. For instance, the nations that belong 
to Cluster 6 have a high percentage of cultivable land (43.13%) 
but have relatively low food security of 55.64, which suggests that 
land is not a guarantee of food security if economic resources and 
proper farm systems are lacking.

Temperature patterns across different cluster groups provide 
improved insights into the temperature-food security relationship. 
Clusters with the best conditions supporting food security 
(Clusters 1 and 5) have the lowest average temperatures 
documented (11.72°C and 11.68°C, respectively), while those with 
compromised food security, such as Cluster 2, have the highest 
average temperature of 24.74°C. The above finding is corroborated 
by findings of econometric studies that have revealed a negative 
relationship between temperature and the level of food security, 
thus supporting past studies that posit an adverse effect of rising 
temperatures on farm productivity in areas that already enjoy 
high-temperature conditions (Ortiz-Bobea et al., 2021; Tigchelaar 
et al., 2023).

The heterogeneous relationship between greenhouse gas emissions 
and food security across different groupings, as demonstrated 
through radar plots and univariate analyses, indicates that one-size-
fits-all policy-making to address the climate emergency could be 
ineffective or even counterproductive if it ignores these underlying 
structural differences (Barrett et al., 2022). For example, the 
economies grouped in Cluster 4 have notably high CO2 emissions 
in their economic output compared to other groupings, pointing 
to specific challenges in the transition to low-carbon development 
pathways, while Clusters 3 and 8 face specific challenges with 
methane emissions.

Many countries in Clusters 2 and 6 also face reduced food 
security and shrinking economic means, thus pointing to increased 
vulnerability to the impacts of climate change. Such an observation 
aligns with research findings showing that economically vulnerable 
countries face disproportionately high barriers to adequately re-
structuring their food systems to respond to climate change’s 
impacts (Niles et al., 2021; Kummu et al., 2021). The radar charts 
in Figures  8 and 10 are handy in depicting these multifaceted 
vulnerabilities, showing how different clusters face distinct 
combinations of challenges across the seven variables considered.

6. CONCLUSION

The empirical evidence presented in this research reveal that GHG 
emissions such as CO2, CH4, and N2O, which cause an increase 
in temperature and are used in this work as proxies for climate 
change, have negative effects on the Food Security Index, while 
ANNIE, a proxy for sustainable growth, has a positive impact 
on the Food Security Index. Greater efforts to increase ANNIE 
for environmental degradation, as well as a decrease in GHG 
emissions and temperature would contribute to promoting food 
security in the 86 economies analyzed in this research, which will 
result in the well-being of the world population.

The impact climate change on food security and sustainable 
development is assessed in 86 economies, whose information 
is available in the period 2012-2020. The empirical evidence 
from the best model, two-step system GMM dynamic panel data, 
supports the hypotheses of this work: There is a positive impact 
of sustainable development on food security and a negative effect 
of climate change on food security, in the countries that were 
the object of this investigation. Derived from this research, it is 



Aali-Bujari, et al.: Effects of CO2, N2O, CH4 Emissions and Adjusted Net National Income on Food Security in 86 Countries

International Journal of Energy Economics and Policy | Vol 16 • Issue 1 • 20261017

suggested that decision makers create and implement strategies 
to promote sustainable development, as well as mitigate climate 
change, reduce CO2, CH4, and N2O emissions, and stabilize 
temperatures, to boost food security, as well as contribute to the 
well-being of the world population.

The results obtained from cluster analysis complement the 
econometric analysis by clarifying structural differences between 
countries that panel data models might overlook. Initially, two 
clusters are identified: One with only two members, China and 
the United States, and the other with the remaining countries. 
Subsequently, a cluster analysis is performed that eliminates China 
and the United States to identify more complex patterns. In this 
case, eight clusters are identified that share similar characteristics 
in the dynamics of all the variables under study, allowing for a 
more in-depth examination. There are now two clusters with only 
one member, Brazil and Russia. Other cluster is determined by 
France, Germany, Japan, and the United Kingdom, all of them 
from G7. The largest cluster includes 31 countries. Radar charts 
allow the specific characteristics of each of the eight clusters to 
be visualized in relation to all the variables under study.

It worth noting that the empirical findings obtained from cluster 
analysis in eight groups are more complex than often assumed 
and vary significantly according to countries’ development 
stages and structural characteristics. These results have important 
implications for environmental policy design, suggesting the need 
for cluster-specific approaches rather than the one-size-fits-all 
solutions typically proposed in econometric approaches.

Finally, more research is needed to include more countries and 
more years when data are available. In addition, future research 
will use alternative causality tests that include machine learning 
and neural networks.

REFERENCES

Arellano, M., Bond, S. (1990), Some tests of specification for panel data: 
Monte carlo evidence and application to employment equations. The 
Review of Economic Studies, 58(2), 277-297.

Arellano, M., Bover, O. (1995), Another look at the instrumental variable 
estimation of error-components models. Journal of Econometrics, 
68(1), 29-51.

Barrett, C.B., Reardon, T., Swinnen, J., Zilberman, D. (2022), Agri-food 
value chain revolutions in low-and middle-income countries. Journal 
of Economic Literature, 60(4), 1316-1377.

Berry, E., Dernini, S., Burlingame, B., Meybeck, A., Conforti, P. (2015), 
Food security and sustainability: Can one exist without the other? 
Public Health Nutrition, 18(13), 2293-2302.

Blundell, R., Bond, S. (1998), Initial conditions and moment restrictions in 
dynamic panel data models. Journal of Econometrics, 87(1), 115-143.

Bond, S. (2002), Dynamic panel data models: A  guide to micro data 
methods and practice. Portuguese Economic Journal, 1(2), 141-162.

Bongiovanni, R., Lowenberg-Deboer, J. (2004), Precision agriculture and 
sustainability. Precision Agriculture, 5(4), 359-387.

Chandio, A.A., Magsi, H., Ozturk, I. (2020), Examining the effects 
of climate change on rice production: Case study of Pakistan. 
Environmental Science and Pollution Research, 27(8), 7812-7822.

Crippa, M., Guizzardi, D., Banja, M., Solazzo, E., Muntean, M., 
Schaaf, E., Pagani, F., Monforti-Ferrario, F., Olivier, J., Quadrelli, R. 

(2023), CO2 Emissions of All World Countries  -  2023 Report. 
Publications Office of the European Union, Luxembourg.

Dawson, T., Perryman, A., Osborne, T. (2016), Modelling impacts of 
climate change on global food security. Climatic Change, 134(3), 
429-440.

Dumitrescu, E., Hurlin, C. (2012), Testing for granger non-causality 
in heterogeneous panels. Economic Modelling, 29(4), 1450-1460.

Ebert, W. (2014), Potential of underutilized traditional vegetables and 
legume crops to contribute to food and nutritional security, income 
and more sustainable production systems. Sustainability, 6(1), 
319-335.

Economist Impact. (2022), The Global Food Security Index (GFSI). 
Available from: https://impact.economist.com/sustainability/project/
food/security/index/download/the/index

Fan, S., Headey, D., Rue, C., Thomas, T. (2021), Food systems for human 
and planetary health: Economic perspectives and challenges. Annual 
Review of Resource Economics, 13(1), 131-156.

Friedlingstein, P., O’Sullivan, M., Jones, M.W., Andrew, R.M., Hauck, J., 
Landschützer, P., Le Quéré, C., Li, H., Luijkx, I.T., Olsen, A., 
Peters, G.P., Peters, W., Pongratz, J, Schwingshackl, C.,…& Zeng, J. 
(2024), Global carbon budget 2024. Earth System Science Data 
Discussions, 2024, 1-133.

Garnett, T., Appleby, M., Balmford, A., Bateman, I., Benton, T., 
Bloomer, P., Burlingame, B., Dawkins, M., Dolan, L., Fraser, D., 
Herrero, M., Vermeulen, S., Godfray, H. (2013), Sustainable 
intensification in agriculture: Premises and policy. Science, 
341(6141), 33-34.

Godfray, H., Beddington, J., Crute, I., Haddad, L., Lawrence, L., 
Muir, J., Pretty, J., Robinson, S., Thomas, S., Toulmin, C. (2010), 
Food security: The challenge of feeding 9 billion people. Science, 
327(5967), 812-818.

Granger, C. (1969), Investigating causal relations by econometric models 
and cross-spectral methods. Econometrica, 37(3), 424-438.

Guiné, R., Pato, M., Costa, C., Costa, D., Barracosa, P., Silva, C., 
Marthino, V. (2021), Food security and sustainability: Discussing 
the four pillars to enncompass other dimensions. Foods, 10, 2732.

Hertel, T.W., De Lima, C.Z. (2020), Climate impacts on agriculture: 
Searching for keys under the streetlight. Food Policy, 95, 101954.

Ivanova, A., Serrano, R. (2022), Climate change, human rights and 
sustainability. Revista Mexicana de Economía y Finanzas, 17, 1-20.

Kamruzzaman, P. (2016), A critical note on poverty eradication target 
of sustainable development goals. European Journal of Sustainable 
Development, 5(2), 87-110.

Kassambara, A. (2017), Practical Guide to Cluster Analysis in R: 
Unsupervised Machine Learning. Vol. 1. Netherlands: STHDA.

Kodinariya, T.M., Makwana, P.R. (2013), Review on determining number 
of Cluster in K-means clustering. International Journal of Advance 
Research in Computer Science and Management Studies, 1(6), 90-95.

Kummu, M., Heino, M., Taka, M., Varis, O., Viviroli, D. (2021), Climate 
change risks pushing one-third of global food production outside the 
safe climatic space. One Earth, 4(5), 720-729.

Lang, T., Barling, D. (2012), Food security and food sustainability: 
Reformulating the debate. The Geographical Journal, 178(4), 313-
326.

Laurett, R., Paco, A., Mainardes, E. (2021), Measuring sustainable 
development, its antecedents, barriers, and consequences in 
agriculture: An exploratory factor analysis. Environmental 
Development, 37, 100583.

Lin, F., Wang, C., Tang, Y., Guo, Q., Wang, H. (2022), Global analysis 
of food security drivers: A  comprehensive clustering approach. 
Foods, 11(7), 983.

Lipper, L., Thornton, P., Campbell, B., Baedeker, T., Braimoh, A., Bwalya, 
M., Caron, P., Cattaneo, A., Garrity, D., Hentry, K., Hottle,  R, 



Aali-Bujari, et al.: Effects of CO2, N2O, CH4 Emissions and Adjusted Net National Income on Food Security in 86 Countries

International Journal of Energy Economics and Policy | Vol 16 • Issue 1 • 2026 1018

Jackson, L.E., Jarvis, A., Kossam, F., Mann, W. (2014), Climate-
smart agriculture for food security. Nature Climate Change, 4(12), 
1068-1072.

Lloyd, S. (1982), Least squares quantization in PCM. IEEE Transactions 
on Information Theory, 28(2), 129-137.

Lobell, D., Schlenker, W., Costa-Roberts, J. (2011), Climate trends and 
global crop production since 1980. Science, 333(6042), 616-620.

Lucatello, S., Sánchez, R. (2022), Climate change in North America: 
Risks, impacts, and adaptation. A  reflection based on the IPCC 
report AR6. Revista Mexicana de Economía y Finanzas Nueva 
Época, 17(4), 1-18.

Madhulatha, T.S. (2011), Comparison between K-means and k-medoids 
clustering algorithms. In: Wyld, D.C., Wozniak, M., Chaki, N., 
Meghanathan, N., Nagamalai, D., editors. Advances in Computing 
and Information Technology. ACITY 2011. Communications in 
Computer and Information Science. Vol. 198. Berlin, Heidelberg: 
Springer.

Mechiche-Alami, A. (2020), Food Security in a Changing Climate: The 
Role of Cropland Intensification and Land Acquisitions Across 
Africa. [Doctoral Thesis] Dept of Physical Geography and Ecosystem 
Science. Sweden, Lund University. Available from: https://portal.
research.lu.se/en/publications/food-security-in-a-changing-climate-
the/role/of-cropland-intensif

Mooi, E., Sarstedt, M., Mooi-Reci, I. (2018), The market research process. 
In: Market Research. Springer Texts in Business and Economics. 
Singapore: Springer.

Moon, M. (2024), How does climate change affect the food security and 
vulnerability of women? A systematic review of gender perspectives. 
Frontiers in Climate, 6, 1374469.

Nickell, S. (1981), Biases in dynamic models with fixed effects. 
Econometría, 49, 1417-1426.

Niles, M.T., Emery, B.F., Wiltshire, S., Brown, M.E., Fisher, B., 
Ricketts, T.H. (2021), Climate impacts are associated with reduced 
diet diversity in children across nineteen countries. Environmental 
Research Letters, 16(1), 015010.

Ortiz-Bobea, A., Ault, T.R., Carrillo, C.M., Chambers, R.G., Lobell, D.B. 
(2021), Anthropogenic climate change has slowed global agricultural 
productivity growth. Nature Climate Change, 11(4), 306-312.

Patra, S., Saha, A., Pal, S.C., Reza, A., Islam, T, Halder, K., 
Srivastava, S.K, Pande, C.B., Islam, A., Costache, R., Alam, E., 
Islam, K. (2025), Highlighting the role of traditional paddy for 
sustainable agriculture and livelihood: Issues, policy intervention 
and the pathways. Discover Sustainability, 6, 181.

Praveena, K., Malaisamy, A. (2024), Climatic shifts and agricultural 
strategies: A thorough review on impact of climate change on food 
security and crop productivity. International Journal of Environment 
and Climate Change, 14(1), 817-831.

Raymond, B., Goulet, F. (2020), Science, technology, and food security: 
An introduction. Science Technology and Society, 25(1), 7-18.

Rehman, A., Ma, H., Ozturk, I., Ahmad, M.I. (2022), Examining 
the carbon emissions and climate impacts on main agricultural 
crops production and land use: Updated evidence from Pakistan. 
Environmental Science and Pollution Research, 29(1), 868-882.

Rome Declaration on World Food Security. (1996), Rome Declaration on 
World Food Security and World Food Summit Plan of Action. Rome, 
Italy. Available from: https://digitallibrary.un.org/record/195568

Rousseeuw, P.J. (1987), Silhouettes: A graphical aid to the interpretation 
and validation of cluster analysis. Journal of Computational and 
Applied Mathematics, 20, 53-65.

Salazar-Núñez, H.F., Venegas-Martínez, F., Lozano-Díez, J.A. (2022), 
Assessing the interdependence among renewable and non-renewable 
energies, economic growth, and CO2 emissions in Mexico. 
Environment Development and Sustainability, 24(11), 12850-12866.

Swaminathan, M. (2001), Food security and sustainable development. 
Current Science, 81(8), 948-954.

Terry, C., Dawson, P., Macdiarmi, J., Matthews, R., Smith, P. (2017), The 
impact of population growth and climate change on food security in 
Africa: Looking ahead to 2050. International Journal of Agricultural 
Sustainability, 15(2), 124-135.

Tigchelaar, M., Battisti, D.S., Blackstock, J.J., Field, C.B. (2023), Recent 
and projected increases in global corn yield volatility from climate 
change and air pollution. Nature Food, 4(4), 298-307.

Tubiello, F.N., Karl, K., Flammini, A., Gütschow, J., Obli-Laryea, G., 
Conchedda, G., Pan, X, Qi, S.Y., Heiðarsdóttir, H.H., Wanner, N., 
Quadrelli, R., Souza, L.R., Benoit, P., Hayek, M.,…& Torero, M. 
(2022), Pre-and post-production processes increasingly dominate 
greenhouse gas emissions from agri-food systems. Earth System 
Science Data, 14(4), 1795-1809.

Vermeulen, S.J., Campbell, B., Ingram, J. (2012), Climate change and 
food systems. Annual Review of Environment and Resources, 37(1), 
195-222.

Vervoort, J., Thornton, P., Kristjanson, P., Wiebke, F., Ericksen, P., 
Kok,  K., Ingram, J., Herrero, M., Palazzo, A., Helfgott, A., 
Wilkinson, A., Havlík, P., Mason-D’Croz, D., Jost, C. (2014), 
Challenges to scenario-guided adaptive action on food security 
under climate change. Global Environmental Change, 28, 383-394.

Viana, C.M., Freire, D., Abrantes, P., Rocha, J., Pereira, P. (2022), 
Agricultural land systems importance for supporting food security 
and sustainable development goals: A systematic review. Science of 
the Total Environment, 6(3), 1-9.

Wahben, S., Anastasiadis, F., Sundarakani, B., Manikas, I. (2022), 
Exploration of food security challenges towards more sustainable 
food production: A systematic literature review of the major drivers 
and policies. Foods, 11, 3804.

Wheeler, T., Braun, J. (2013), Climate change impacts on global food 
security. Science, 341(6145), 508-513.

Wijekoon, A., Marikar, F. (2024), Case study of agriculture and 
development projects on Sri Lanka army’s contribution to achieve 
food security. Bangladesh Journal of Scientific and Industrial 
Research, 59(1), 35-46.

World Bank. (2024), World Development Indicators 2024. Available from: 
https://databank.worldbank.org/source/world-development-indicators

World Food Program. (2025), Full Report World Food Program Global 
Outlook. Available from: https://www.wfp.org/publications/wfp-
2025-global-outlook

World Summit on Food Security. (2009), Declaration of the World 
Summit on Food Security; 2009. Available from: https://www.fao.
org/fileadmin/templates/wsfs/summit/docs/declaration/wsfs09/draft/
declaration.pdf

Xu, R., Wunsch, D.C. (2010), Clustering algorithms in biomedical 
research: A review. IEEE Reviews in Biomedical Engineering, 3, 
120-154.



Aali-Bujari, et al.: Effects of CO2, N2O, CH4 Emissions and Adjusted Net National Income on Food Security in 86 Countries

International Journal of Energy Economics and Policy | Vol 16 • Issue 1 • 20261019

Appendix 1: Clustering including all countries
Cluster Number of 

countries
Countries

Cluster 1 84 Algeria, Angola, Argentina, Austria, Azerbaijan, Bahrain, Bangladesh, Belarus, Belgium, Benin, Botswana, Brazil, 
Bulgaria, Burkina Faso, Burundi, Cambodia, Cameroon, Canada, Colombia, Congo (Dem. Rep.), Costa Rica, Czech 
Republic, Cote d’Ivoire, Denmark, Dominican Rep., Ecuador, Egypt, El Salvador, Ethiopia, Finland, France, Germany, 
Ghana, Greece, Haiti, Hungary, Indonesia, Israel, Italy, Japan, Kazakhstan, Kenya, Kuwait, Laos, Madagascar, 
Malaysia, Mali, Mexico, Nepal, Netherlands, New Zealand, Nicaragua, Norway, Oman, Pakistan, Paraguay, Peru, 
Philippines, Poland, Portugal, Romania, Russia, Rwanda, Saudi Arabia, Senegal, Serbia, Sierra Leone, Slovakia, South 
Africa, South Korea, Spain, Sri Lanka, Sudan, Sweden, Switzerland, Tajikistan, Tanzania, Togo, Tunisia, Uganda, 
Ukraine, United Arab Emirates, United Kingdom, Uruguay

Cluster 2 2 China, United States

Appendix 2: Clustering excluding China and the United States
Cluster Number of 

countries
Countries

Cluster 1 23 Austria, Azerbaijan, Belarus, Botswana, Costa Rica, Czech Republic, Finland, Greece, Israel, Italy, Kazakhstan, 
Netherlands, New Zealand, Norway, Peru, Poland, Portugal, Slovakia, South Korea, Spain, Sweden, Switzerland, Tajikistan

Cluster 2 31 Algeria, Angola, Bahrain, Benin, Burkina Faso, Cambodia, Colombia, Congo (Dem. Rep.), Dominican Rep., Egypt, 
Ethiopia, Ghana, Kenya, Kuwait, Laos, Madagascar, Malaysia, Mali, Nepal, Nicaragua, Paraguay, Philippines, Saudi 
Arabia, Senegal, Sierra Leone, South Africa, Sri Lanka, Sudan, Tanzania, Tunisia, United Arab Emirates

Cluster 3 1 Brazil
Cluster 4 4 Cote d’Ivoire, Ecuador, Oman, Uruguay
Cluster 5 4 France, Germany, Japan, United Kingdom
Cluster 6 14 Bangladesh, Belgium, Bulgaria, Burundi, Denmark, El Salvador, Haiti, Hungary, Romania, Rwanda, Serbia, Togo, 

Uganda, Ukraine
Cluster 7 6 Argentina, Cameroon, Canada, Indonesia, Mexico, Pakistan
Cluster 8 1 Russia
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