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ABSTRACT

This paper examines the impact of climate change (measured as carbon dioxide, nitrous oxide, and methane emissions, as well as temperatures),
arable land, and sustainable development (measured as Adjusted Net National Income, ANNI) on food security in 86 countries during 2012-2020. To
this end, Granger non-causality in heterogeneous panels, static and dynamic panel data models, clusterization with elbow and silhouette analysis, as
well as radar plot visualization. The Food Security Index (FSI) comes from Economist Impact (2022) and the rest of the variables from World Bank
(2024). The main empirical result from panel data suggest that climate change has a negative effect on FSI, and ANNI measured as Gross National
Income minus fixed capital consumption and natural resource depletion, used as a proxy of sustainable development, has a positive impact on FSI.
Moreover, the cluster analysis complements the econometric analysis by identifying structural differences among countries that panel data models might
overlook. Initially, two clusters are identified: one with only two members, China and the United States, and the other with the remaining countries.
Subsequently, a cluster analysis is performed removing China and the United States to identify patterns in the rest of the countries. In this case, eight
clusters are identified that share similar characteristics in the dynamics of all the variables under study, allowing for a more in-depth examination. There
are now two clusters with only one member, Brazil and Russia. Other cluster contains only G7 countries. The largest cluster includes 31 countries.
Finally, radar plots allow the specific characteristics of each of the eight groups to be visualized in relation to all the variables under study. Finally,
the cluster analysis also offers important implications for sustainable policy design, suggesting the need for cluster-specific approaches rather than
one-size-fits-all solutions.

Keywords: Climate Change, Sustainable Development, Food Security, Panel Data, Cluster Analysis, Radar Plot Visualization
JEL Classifications: C33, Q51, Q53, O13.

1. INTRODUCTION

Recent studies assess the impact of climate change on global
food security and crop productivity. Most of these studies
explore the consequences of climate change on arable land and
agriculture, with a particular focus on the challenges in vulnerable
regions in Africa and Asia. These investigations also discusses
the complexities of mitigating climate-induced disturbances in
crop growth patterns and the implications of climate change on
biodiversity, recognizing the interconnectedness of ecological
systems and the imperative for innovation; the emphasis is on

ensuring the resilience of global agriculture in the face of climate
changes (Praveena and Malaisamy, 2024; Chandio et al., 2020;
Hertel and de Lima, 2020).

The most common way to quantify and monitor climate change is
by measuring carbon dioxide CO,, nitrous oxide N,O and methane
CH, emissions, along with temperatures. In this sense, the carbon
footprint includes all these emissions and converts them into CO,
equivalent, which is a useful indicator for assessing the impact of
human activities on climate change. On the other hand, industrial
livestock focuses on meat production contributing significantly to
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CH, emissions. Therefore, the interaction of climate change, food
security and sustainable development is an issue relevant importance.

On the other hand, according to the World Food Program (WFP)
Global Outlook 2025, 343 million people are acutely food insecure
in 74 countries where WFP operates. It should be noted that there
has been a 10% increase since 2023, with almost 200 million
more people than pre-pandemic levels. Nowadays, food security
has become one of the most relevant issues after the COVID-19
pandemic and the conflict between Russia and Ukraine in 2022.
Russia being one of the main food producers, it produces around
40% of crops of the total agricultural production, and 60% of
livestock including wool, meat and dairy production. Russia is also
the third largest producer of potatoes, the fourth largest producer
of wheat, and the twelfth largest producer of corn.

Today food security has become a priority on national and
international political agendas. It is supposed to be one of the most
pressing challenges in most of nations, since food security implies
one of the main factors of the well-being of the population. The
term food security emerged after the Second World War and the
creation of the United Nations. Today there is a wide literature
dealing with this topic and its relations with other variables such as
sustainable development and climate change (Swaminathan, 2001;
Godfray et al., 2010; Lang and Barling, 2012; Berry et al., 2015;
Kamruzzaman, 2016; Raymond and Goulet, 2020; Lucatello and
Sanchez, 2022; Salazar-Nunez et al., 2022; Rehman et al., 2022;
Ivanova and Serrano, 2022; Praveena and Malaisamy, 2024).

Since the 1996 Rome Declaration on World Food Security
(RDWFS) were defined two basic dimensions, availability and
utilization, with a focus on nutritional well-being. In this sense, the
sustainable management of natural resources and the elimination
of unsustainable patterns of food consumption and production is
becoming an important issue. In this regard, the World Summit on
Food Security (2009) added the concept of stability/vulnerability
as the short-term time indicator of the capacity of food systems
to withstand crises, whether natural or man-made, as part of the
Five Rome Principles for Sustainable Global Food Security.
More recently, the relevance of sustainability to preserve the
environment, natural resources and agroecosystems has been
highlighted, as well as the importance of food security as a part
of sustainability and vice versa (Patra et al., 2025).

From the previous perspective, the concept of sustainable diets can
play a key role as an objective and way of maintaining nutritional
well-being and health, while ensuring sustainability for future food
security. Sustainability must be integrated as an explicit dimension
of food security, to prevent current policies and programs from being
the causes of greater food insecurity in the future (Berry etal., 2015).
The links between sustainability and food security are becoming
increasingly relevant in current research. Hence, the concept of
sustainability in the context of food security is gaining importance
in recent times. Finally, sustainability must be assumed as part of the
long-term temporal dimension in the assessment of food security.

Food security has naturally been associated with food production,
hence it is related to the availability of food in the market and linked

International Journal of Energy Economics and Policy | Vol 16 ¢ Issue 1 * 2026

to the ability to purchase or acquire a basic food basket. Therefore,
food security is associated with nutrition, clean water, healthy
environment, income, basic health, and educational coverage.
In this sense, food security is linked to ecological factors that
determine it in the long term (Swaminathan, 2001). Food security
is a complex issue, as it is related to a multitude of economic,
financial, administrative, technological, innovation, ecological,
social, environmental, political, and many other variables. It is
worth noting that food security is impacted depending on the time
horizon, some variables are affected in the short term and others
in the medium and long term. Hence, food security is one of the
most important challenges to achieve at the local and international
level, given its contribution to the well-being of the population
(Wijekoon and Marikar, 2024).

Moreover, there are two general approaches to food security, on
the one hand a perspective that is based on the increase in food
production and focuses on arable land and agriculture, while on
the other hand, a more complex, considers ecological systems. The
first approach began after the Second World War, and within a few
decades it was replaced by the second one, which is more complex
in an ecological context. Lang and Barling (2012) conclude that it
is imperative to create a sustainable food system, which demands a
more relevant policy framework than the one that currently exists.
Finally, the study by Raymond and Goulet (2020) highlight that
the interaction between food security and food sustainability with
science and technology to be democratized through food policies.
In this sense, knowledge infrastructures show the limitations of
the models to evaluate and confront the lack of food security.

According to the Sustainable Development Goals (SDGs), one
of them is to eradicate extreme poverty for all people around
the world by 2030, so the challenge of food security is urgent to
contribute to eradicating poverty throughout the planet. In this
sense, Kamruzzaman (2016) suggests that to achieve the objectives
the world needs to be consistently peaceful, since poor countries
require greater commitment and effort to achieve changes in the
global economic structure, so the eradication of poverty must be
addressed rigorously.

Furthermore, the links between climate change and food security
are highlighted by the current variations in the planet’s climate
affecting the world’s population. In this sense, Godfray et al. (2010)
state that continued growth in population and consumption will
mean that global demand for food will increase for at least another
40 years. Increasing competition for land and water, as well as
overexploitation of fisheries, will affect the ability to produce food,
as will the urgent need to reduce the impact of the food system
on the environment. In this sense, the effects of climate change
are another threat, but the world can produce more food and can
ensure that it is used more efficiently and equitably. The authors
conclude that a multifaceted and linked global strategy is needed
to ensure sustainable and equitable food security.

The present investigation also carries out a cluster analysis to
complement the proposed econometric analysis by identifying
structural differences among the countries in the sample that
panel data models might fail to notice. This cluster analysis allows
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for the identification of groups of countries that share similar
characteristics in the dynamics of all the variables under study,
allowing for a more in-depth examination. Hence, cluster analysis
will be used as an alternative research framework to complement
the investigation about the interactions among sustainable
development, climate change, and food security in 86 countries.
Cluster analysis is commonly used as a fitting multivariate
statistic because of its ability to identify inherent groupings among
countries based on various simultaneous similarities (Mooi et al.,
2018). Mainly, the use of the k-means clustering algorithm has
been based on its efficacy in sustainability research regarding
pattern identification among countries in terms of environmental
and economic indicators (Xu and Wunsch, 2010; Lin et al., 2022).

This research differs from the current literature in the following
ways: (1) it focuses on a large sample of 86 economies, (2)
it considers greater availability of data compared to the past,
allowing for a greater number of countries, variables and
periods, (3) it estimates cointegration, Granger non-causality
in heterogeneous panels, and dynamic panel data models, (4)
it corrects multicollinearity and autocorrelation problems, (5)
it carries out a cluster analysis to complement the econometric
analysis by identifying structural differences among countries
that panel data models might overlook, and (6) it finds patterns
in clusters that share similar characteristics in the dynamics of all
the variables under study.

The rest of the document is organized as follows: Section 2
provides a short literature review; Section 3 presents the nature
of the data, the descriptive statistics and the graphical analysis of
the data; Section 4 deals with cointegration, Granger causality
and panel data analysis; Section 5 carries out a cluster analysis
to complement the econometric analysis by clarifying structural
differences among countries; Section 5 presents the analysis and
discussion of the main empirical results; finally, Section 6 presents
the conclusions, acknowledges the limitations, and offers some
policy recommendations.

2. ASHORT LITERATURE REVIEW

The interaction among sustainability, climate change and food
security is analyzed in various investigations. For instance,
Bongiovanni and Lowenberg-Deboer (2004) study the role
of precision agriculture in helping to manage crop production
inputs in an environmentally friendly way. By using site-specific
knowledge, precision agriculture can determine rates of fertilizers,
seeds and chemicals for soil and other conditions. It is worth
mentioning that precision agriculture substitutes information and
knowledge for physical inputs, it can contribute in many ways to
the long-term sustainability of production agriculture. In this sense,
precision agriculture should reduce environmental load through
optimal application of fertilizers and pesticides, decrease chemical
load, and can contribute to better environmental management.

On the other hand, Lobell et al. (2011) analyze the effect of climate
change on future food availability, finding that in the cropping
regions and growing seasons of most countries and temperature
trends exceeded one standard deviation of historical inter-annual

variability from 1980 to 2008. Their analysis of linking yields of
the four major staple crops to climate indicate that global maize
and wheat production declined by 3.8% and 5.5%, respectively,
relative to a contractual scenario with no climate trends. For
soybeans and rice, the winners and losers were largely balanced.
Climate trends were large enough in some countries to offset
a significant portion of the increases in average yields arising
from technology, carbon dioxide fertilization, and other factors.
Likewise, Vermeulen et al. (2012) suggest that food systems
contribute between 19% and 29% of global greenhouse gas (GHG)
emissions. Agricultural production, including indirect emissions
associated with land cover change contributes between 80% and
86% of total food system emissions. The authors warn that the
impacts of global climate change on food systems are widespread,
complex, geographically and temporally variable, as well as deeply
influenced by socioeconomic conditions. These authors also state
that climate change will affect agricultural yields and incomes,
food prices and, in particular, food security. Also, these authors
indicate that low-income food producers and consumers will be
more vulnerable to climate change due to their comparatively
limited capacity to invest in adaptive technologies and suggest
synergies among food security, adaptation and mitigation.
Likewise, Wheeler and Braun (2013) study the role of climate
change in progress towards a world without hunger, highlighting
that the stability of food systems as a whole may be at risk due
to climate change and variability in supply in the short term;
however, they emphasize that the potential impact is less clear
at the regional scale, but climate change may exacerbate food
insecurity in areas currently vulnerable to hunger and malnutrition.
Finally, the authors suggest the need for considerable investment
in adaptation and mitigation actions to achieve a climate-smart
food system that is more resilient to the influences of climate
change on food security.

On the other hand, Garnett et al. (2013) examine the challenges
posed by climate change to agriculture and food security in
developing countries, highlight that many current agricultural
practices damage the environment and are becoming a major
source of GHG, and conclude that food insecurity in a region can
have widespread political and economic ramifications worldwide
in an increasingly globalized world. Likewise, Lipper et al. (2014)
study the role of climate-smart agriculture in transforming and
reorienting agricultural systems to support food security in the
context of the new realities of climate change, highlighting that
climate-smart agriculture promotes coordinated actions by farmers,
private sector, civil society and policy makers towards climate-
resilient pathways. Finally, reorienting agricultural systems to
support food security increases local institutional effectiveness,
promotes coherence between climate and agricultural policies,
linking climate and agricultural financing.

Similarly, Ebert (2014) investigates the role of underutilized
vegetables and leguminous crops in achieving nutritional security,
highlighting that significant research, breeding and development
efforts are needed. The author finds that underutilized crops such as
amaranth, drumstick and mung bean have demonstrated potential
for wider adoption and commercial exploitation. Moreover,
Vervoort et al. (2014) analyze food security in the context of

International Journal of Energy Economics and Policy | Vol 16 ¢ Issue 1 * 2026




Aali-Bujari, et al.: Effects of CO,, N,O, CH, Emissions and Adjusted Net National Income on Food Security in 86 Countries

climate change in East Africa, concluding that long-term viability
and sustainability could be ensured if decision-makers took
ownership of the process and focused on developing strategic
planning capacity within their local organizations. Finally,
Dawson et al. (2016) examine the effects of climate change on
the United Nations Objectives of eradicating poverty and hunger;
however, the rapid growth of the world population, coupled with
global climate change have negative effects on food security.
The authors estimate food exports, assess diets and malnutrition,
determine average calories per capita, and state the degree of
inequality in food access. Finally, they determine calorific values
of food, asses crop yields and examine population changes under
socioeconomic and climate change scenarios for 2050, 2085 and
2100. These authors project that in a scenario without climate
change based only on projected changes in population and
agricultural land use, the results show that 31% (2.5 billion people
in 2050) of the world’s population is at risk of malnutrition if no
agricultural adaptation or innovation is made in the intervening
years. In a second scenario, 21% (1.7 billion people) are at risk of
malnutrition in 2050 when climate change is taken into account.
However, their modeling does not take into account future trends in
technology, improved crop varieties or interventions in agricultural
trade, although it is clear that all of these adaptation strategies
will need to be adopted on a global scale if society is to ensure an
adequate food supply for a projected world population of more
than 9 billion people.

On the other hand, Terry et al. (2017) analyze the impact of
population growth and climate change on food security in Africa
by 2050. They find the prevalence of malnutrition in 44 African
countries and population growth as the main cause of food
insecurity and malnutrition, they suggest different adaptation
alternatives: Increasing yield through sustainable intensification
and increasing imports with trade agreements to prevent food
insecurity in the future. Later, Mechiche-Alami (2020) studies
the role of national large-scale land acquisition policies and
agricultural intensification programs in food security in Africa.
The author concludes on the risks of prioritizing productivity
policies that are incapable of providing accessibility to food in
Africa, which only benefits transnational and national elites at the
expense of small farmers. Finally, the author suggests agroecology
as a potential alternative to sustainably improve food security on
the African continent.

Moreover, Guiné et al. (2021) assess the relationship between food
security and sustainability, considering statistical information for
the various dimensions of food security during the period 2000-
2020. The authors conclude that malnutrition is more affected
by the availability of food and nutrients than political stability,
and that the level of development is not the main explanation for
nutrition problems. They suggest that agri-food supply chains
should be improved and political stability supported to mitigate
malnutrition worldwide and ensure global access to sustainable
and healthy diets. In this sense, Laurett et al. (2021) study
several determinants of sustainable development in agriculture
in Brazil as natural agriculture, innovation and technology and
environmental aspects. The authors identify different associated
elements of sustainable development in agriculture such as external

influencers, commitment to sustainability, concern for future
generations, environmental motivators, individual characteristics,
socio-environmental benefits and subjective well-being.

Likewise, Wahben et al. (2022) analyze the factors that promote
food security and the sustainability of future food production
(environmental, social and economic). They carry out an
exhaustive study of the literature on food security, its determinants
and policies. The authors find that the policies that stand out are
those to mitigate food loss and waste. The authors also suggest
including environmental indicators and policies, consumer
representation and the entire supply chains in the Global Food
Security Index (GFSI). Furthermore, they conclude that food
security is a complex issue and demands multidisciplinary
interventions. Finally, Viana et al. (2022) review the literature on
Sustainable Development Goals (SDG 2 — zero hunger) and food
security, analyzing many investigations on the topic, revealing that
most of these investigations were published between 2015 and
2019 (59%), and most case studies were conducted in Asia (36%)
and Africa (20%). Over the past 30 years, most research focused
on six main research fields: land use change (28%), agricultural
efficiency (27%), climate change (16%), farmer motivation (12%),
urban and peri-urban agriculture (11%) and land suitability (7%).

Moreover, Moon (2024) examines the effects of climate change
on food security of vulnerable groups in Bangladesh. The author
highlights the significant risks that climate change poses to food
security in Bangladesh and vulnerable women, including increased
susceptibility to food shortages and post-disaster problems. In
this case, women in Bangladesh are more susceptible to these
problems due to their social, economic and political circumstances,
concluding that women are negatively affected by climate change.
The author also suggests implementing policies to improve regional
agricultural production and strengthen resilience to climate change.
More recently, Wijekoon and Marikar (2024) explore the role of
the Sri Lankan Army in improving food security influenced by
climate change, agricultural practices and social dynamics in the
country. The authors also examine the potential contributions of the
military in terms of food production, infrastructure development,
and technology, highlighting the importance of collaboration,
knowledge transfer, and sustainable practices to achieve lasting
food security. Hence, through collaborative efforts involving
multiple stakeholders, including government agencies, local
communities, and agricultural organizations, a more resilient and
secure food system for the country can be imagined.

Finally, Cluster analysis is commonly used as a fitting multivariate
statistic because of its ability to identify inherent groupings among
countries based on various simultaneous similarities (Mooi et al.,
2018). Mainly, the use of the k-means clustering algorithm has
been based on its efficacy in sustainability research regarding
pattern identification among countries in terms of environmental
and economic indicators (Xu and Wunsch, 2010). The k-means
algorithm works by dividing observations into k groups in an
attempt to minimize the within-cluster sum of squares (Lloyd,
1982). In cluster analysis, the elbow method evaluates the
relationship between the within-cluster and cluster size, and the
silhouette analysis measures how well every country is assigned
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to its cluster to other clusters, hence giving a measurement of
cluster cohesion and separation (Kodinariya and Makwana, 2013;
Madhulatha, 2011).

3. NATURE OF THE DATA, DESCRIPTIVE
STATISTICS AND GRAPHICAL ANALYSES

The data used in this research is obtained from Economist Impact
(2022) and World Bank (2024). The Food Security Index (FSI) is
made up of 68 indicators that measure variables that encourage
food security in both developed and developing countries and is
available on the Economist Impact website. The FSI considers food
affordability, food quality and food safety, as well as sustainability.
On the other hand, from the World Bank data (2024) is obtained
the Adjusted Net National Income (ANNI) measured as Gross
National Income minus fixed capital consumption and natural
resource depletion in constant 2010 US dollars and is used as a
proxy variable for sustainable development. Likewise, carbon
dioxide (CO,), nitrous oxide (N,0O) and methane (CH,) emissions
are given in kt (thousand tons) of CO, equivalent. It should be
noted that the emission of 1 kg of N,O equals 298 kg of CO,
equivalent, and the emission of 1 kg of methane (CH,) is equal
to 25 kg of CO, equivalent. Finally, temperature data is given in
degrees Celsius, and arable land is expressed as a percentage of
total land.

The study period is restricted to the availability of data, so variables
correspond to the period 2012-2020. This research uses the same
number of observations for all variables for all countries. The
panel includes 86 economies: Algeria, Angola, Argentina, Austria,
Azerbaijan, Bahrain, Bangladesh, Belarus, Belgium, Benin,
Botswana, Brazil, Bulgaria, Burkina Faso, Burundi, Cambodia,
Cameroon, Canada, China, Colombia, Congo (Dem. Rep.), Costa
Rica, Cote d’Ivoire, Czech Republic, Denmark, Dominican Rep.,
Ecuador, Egypt, El Salvador, Ethiopia, Finland, France, Germany,
Ghana, Greece, Haiti, Hungary, Indonesia, Israel, Italy, Japan,
Kazakhstan, Kenya, Kuwait, Laos, Madagascar, Malaysia, Mali,
Mexico, Nepal, Netherlands, New Zealand, Nicaragua, Norway,
Oman, Pakistan, Paraguay, Peru, Philippines, Poland, Portugal,
Romania, Russia, Rwanda, Saudi Arabia, Senegal, Serbia, Sierra
Leone, Slovakia, South Africa, South Korea, Spain, Sri Lanka,
Sudan, Sweden, Switzerland, Tajikistan, Tanzania, Togo, Tunisia,
Uganda, Ukraine, United Arab Emirates, United Kingdom, United
States and Uruguay.

Table 1 shows the variables and notation used in this investigation,
as well as their averages, standard deviations, and maximum and

Table 1: Variables, notation and descriptive statistics

minimum levels. For the sample of the 86 economies, the average
FSIis 61.56318, the standard deviation is 12.62436, the minimum
is 32.8 corresponding to Burkina Faso in 2018, and the maximum
is 84.3 corresponding to Finland in 2020. The average ANNI of the
sample is 6.36E+11 USD, with a standard deviation of 2.00E+12
USD, with a minimum of 1.74E+09 USD corresponding to Burkina
Faso in 2012 and a maximum of 1.71E+13 USD corresponding
to the USA in 2019. The average CO, emissions are 746341.3 kt,
with a standard deviation of 2454226 kt, the lowest emission is
6.6 kt which corresponding to Togo in 2012, while the highest
CO, emission is 1.65E+07 kt corresponding to China in 2020.

Also note, from Table 1, that the average CH, emissions are
65275.73 kt of CO, equivalent with standard deviation 161738.6
kt, the lowest emission is 1009.982 kt corresponding to Burundi
in 2012, while the maximum CH, emissions are 1186285 kt
corresponding to China in 2020. The average N,O emissions
are 24718.78 kt with standard deviation 65833.55 kt, the lowest
emission is 124.8322 kt corresponding to Bahrain in 2012, while
the maximum N, O emission is 551682.8 kt corresponding to China
in 2016. The average temperature in all 86 countries is 18.35156°C
with standard deviation 7.690974°C, the minimum is —0.085°C
corresponding to Canada in 2014, and the maximum is 29.13°C
corresponding to Mali in 2016. The percentage of arable land has
an average of 18.32445% with standard deviation 14.81341%, the
minimum is 0.1088853% corresponding to Oman in 2012, and the
maximum is 60.8% corresponding to Serbia in 2015.

Below are the results of a sequence of graphical analyses that relate
the dependent variable, FSI, with CO,, N,O, CH, emissions, as
well as temperatures, arable land and ANNI in the 86 economies.
Figure 1 shows the dynamics between the logarithm of ANNI and
the logarithm of FSI. For all the economies analyzed, a positive
relationship is observed between these variables. In this sense, an
increase in ANNI is associated with an increase in FSI, as shown
in Figure 1.

On the other hand, Figure 2 shows the relationship between the
logarithm of CO, and the logarithm of FSI in all the economies.
The results are mixed since there is a group of countries (49%)
that shows a positive relationship between the logarithms of these
variables. That is an increase in CO, emissions is associated with
an increase in the FSI However, the rest of the countries present a
negative relationship, i.e., a reduction in CO, emissions is related
to an increase in FSI. This is due to structural differences among
countries and the unique characteristics of each one. To better
understand this behavior later, in Section 6, a clustering analysis
will be performed to determine groups of countries that share

Variable Notation Average Deviation Minimum Maximum
Food security index Isa 61.56318 12.62436 32.8 84.3
Adjusted Net National Income Inna 6.36E+11 2.00E+12 1.74E+09 1.71E+13
CO, Carbono 746341.3 2454226 6.6 1.65E+07
Methane Metano 65257.73 161738.6 1009.982 1186285
N,0 Nitroso 24718.78 65833.55 124.8322 551682.8
Temperatura Temperatura 18.35156 7.690974 —0.085 29.13
Arable land Cultivables 18.32445 14.81341 0.1088853 60.8

Source: Authors’ own elaboration with data from Economist Impact (2022) and World Bank (2024)
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similar characteristics in the dynamics of the variables under
study. Figure 2 shows a first phase, in which an increase in CO,
emissions is associated with an increase in the FSI in the countries
studied. A second phase is appears, in which carbon dioxide
emissions decrease with an increase in the food security index.
This last behavior may be related to public policies that promote
environmental protection, which seek to reduce carbon dioxide
emissions, greater citizen awareness, or companies’ willingness
to protect the environment by reducing their GHG emissions.

Likewise, Figure 3 shows the dynamics between the logarithm
of CH, emissions and the logarithm of the FSI, for the
economies explored in this research, a positive relationship
between the variables is first observed, which indicates an
increase in the logarithm of CH, emissions associated with an
increase in the logarithm of the FSI, then a negative relationship
indicating a logarithmic decrease in CH, emissions associated
with a logarithmic increase in the FSI. Thus, Figure 3 shows
the relationship between climate change (proxy for methane

Figure 1: Adjusted net national income and food security

emissions) and food security. This figure illustrates, on the one
hand, an increase in CH, emissions associated with an increased
FSI. This may be related to the increase in meat production,
which has a positive impact on food security but causes higher
CH, emissions. Second, a negative slope is observed, showing a
decrease in CH, emissions and an increased in FSI, suggesting that
environmental policies and the primary sector’s efforts to reduce
CH, emissions are being successful.

On the other hand, Figure 4 reveals the relationship between the
logarithm of N,O emissions and the logarithm of the FSI for the
economies analyzed. Initially, a negative relationship is observed
between the logarithms of these variables and later a positive
trend appears. An increase in N,O emissions is associated with a
reduction in the FSI, then an increase in N,O emissions is related
to an increase in the FSI. Figure 4 shows that N,O emissions
have not been controlled over time. It is a GHG, more potent
than CO, and CH,, and is mainly associated with the agricultural
sector. N,O emissions have increased by 40% between 1980 and

Figure 3: Methane emissions and food security
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Figure 2: Carbon dioxide emissions and food security

Source: Authors’ own elaboration with data from Economist Impact
(2022) and World Bank (2024)

Figure 4: Nitrous oxide emissions and food security
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2020, significantly accelerating climate change. Finally note that
agricultural production also contributes to increased food security.

Below, Figure 5 shows the relationship between the logarithm of
temperatures and the logarithm of the FSI for the economies in
the sample. At first, a positive relationship is observed between
the logarithms of these variables and later a negative one. An
increase in temperature is associated with an increase in the FSI,
then a reduction in temperature is related to an increase in the FSI.
Figure 5 suggests that public policies in the different countries,
citizen actions, and corporate commitment have slowed global
warming, which has contributed to increased food security in the
various countries analyzed.

Finally, Figure 6 shows the relationship between the logarithm of
the percentage of arable land as a proportion of total land and the
logarithms of the FSI for the economies under study. A negative
relationship is observed between the variables indicating that
countries with higher proportions of arable land are associated

Figure 5: Temperature and food security
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Figure 6: Arable land and food security
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with lower FSI, which may be related to the fact that countries
specialized in agriculture are poorer than countries that specialize
in industry and services, which enjoy higher incomes and food
purchasing power.

In summary, Figure 1 shows a positive relationship between
ANNI and FSI. Also, Figures 2, 3 and 5 show that the behavior
between CO,, CH,, and temperatures with FSI is represented by
concave curves downwards. On the other hand, Figure 4 shows
the relationship between N,O emissions with FSI with a tendency
of a convex curve upwards. Finally, Figure 6 shows a negative
relationship between arable land and FSI. To better understand
this behavior of concave and convex trends, a clustering analysis
will be performed in section 6 to delimit groups of countries that
share common characteristics in the dynamics of the variables
under study.

4. COINTEGRATION, GRANGER
CAUSALITY AND PANEL DATA

This section is divided into two parts. The first part is devoted to
the statistical analysis of the study variables, estimating stationarity,
cointegration and Granger causality to avoid problems related to
spurious regressions. The second part presents the main results of
panel data estimations, both static and dynamic. The purpose is
to examine the interaction among the FSI, ANNI, CO,, N,O, and
CH, emissions, temperatures and arable land for the sample of 86
countries. The variables are expressed in logarithms: /isa is the
logarithm of the FSI, /inna is the logarithm of the ANNI, lcarbono
is the logarithm of CO, emissions, /methane is the logarithm of CH,
emissions, [nitroso is the logarithm of N,O emissions, ltemperatura
is the logarithm of temperatures, and /cultivable is the logarithm of
arable land. The period analyzed is 2012-2020, which allows having
86 countries and 9 years. A balanced panel is estimated with the
Stata package. The main results are expressed in the next section.

4.1. Stationarity

Table 2 shows in row 1 the stationarity of the FSI series, the null
hypothesis of the existence of a unit root is rejected in levels. Row
2 indicates stationarity in second differences of ANNI, while rows
3,4 and 5 show the stationarity in first differences of CO,, CH, and
N,O. Subsequently, row 6 shows that temperatures are stationary in
levels. Finally, row 7 shows that arable land is stationary in levels.

4.2. Cointegration

Cointegration means that even though the series are not stationary
at an individual level, a linear combination of two or more time
series can be stationary, this phenomenon can be conceived as
the stationary difference between a pair of series. The vector of
coefficients that create this stationary series is the cointegrating
vector. Table 3 shows the results of cointegration tests between
the dependent variable FSI and the explanatory variables. Row
1 shows that the null hypothesis of no cointegration is rejected,
therefore the FSI and ANNI series are cointegrated. Row 2 shows
the results of cointegration between the FSI and CO, emissions.
Subsequently, row 3 shows cointegration between the FSI and
CH, emissions. On the other hand, row 4 shows cointegration
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Table 2: Unit root tests

1 Isa 0.0077 H, is rejected
2 D2.inna 0.0000 H, is rejected
3 D.carbono 0.0000 H, is rejected
4 D.metano 0.0000 H, is rejected
5 D.nitroso 0.0000 H,is rejected
6 Temperatura 0.0000 H,is rejected
7 Cultivable 0.0000 H, is rejected

H,;: Panels contain unit roots. Source: Authors’ own elaboration with data from
Economist Impact (2022) and World Bank (2024), Stata

Table 3: Cointegration estimates

1 Linna and lisa 0.0020 H, is rejected
2 Lcarbono and lisa 0.0007 H, is rejected
3 Lmetano and lisa 0.0093 H, is rejected
4 Lnitroso and lisa 0.0126 H, is rejected
5 Ltemperatura and lisa 0.0007 H, is rejected
6 Lcultivable and lisa 0.0050 H, is rejected

H,: No Cointegration. Source: Authors’ own elaboration with data from Economist
Impact (2022) and World Bank (2024), Stata

between the FSIand N,O emissions. Likewise, row 5 presents the
cointegration estimates between the FSI and temperatures. Finally,
row 6 shows cointegration between the FSI and arable land where
the null hypothesis of no cointegration is rejected and, therefore,
the series are stationary.

The results of the cointegration estimates indicate that the variables
are cointegrated, the idea suggests the possible presence of
causality between the independent variables with the explained
variable, that is, causality between sustainable development,
climate change and food security.

4.3. Granger Causality

Granger causality is a fundamental analysis to detect relationships
between variables. Dumitrescu and Hurlin (2012) propose the
methodology to estimate Granger’s (1969) causality test for panel
data. The authors use individual Wald statistics of Granger non-
causality averaged across cross-section units. The test consists
of establishing the null hypothesis of non-existence of causality
between two variables, the rejection criterion is based on detecting
significance levels <0.05. Next, causality tests are performed for
the different variables of interest for this research. Table 4 shows
the causality tests between all the variables of interest with 1-year
lag, there are important findings, the ANNI, CO,, CH,, N,O,
temperatures and arable land Granger-cause the FSI.

The previous results reinforce the research hypothesis that
sustainable development and climate change are relevant to
global food security. In summary, derived from this section,
the cointegration shows a stable relationship among sustainable
development, climate change and food security, and the Granger
causality analysis indicates that sustainable development and
climate change Granger-cause food security.

4.4. Static and Dynamic Panel Data Models
The use of panel data is very useful for applied research and
therefore its use is increasingly frequent. Panel data is a sample

Table 4: Dumitrescu and Hurlin (2012) Granger
non-causality test

Lagorder: 1  Linna does not 0.0000 H,is rejected
Granger-cause lisa
Lcarbono does not 0.0000 H,is rejected
Granger-cause lisa
Lmetano does not 0.0083 H,is rejected
Granger-cause /isa
Lnitroso does not 0.0000 H,is rejected
Granger-cause /isa
Temperatura does not 0.0000 H,is rejected
Granger-cause isa
Lcultivable does not 0.0017 H, is rejected

Granger-cause lisa

Source: Authors’ own elaboration with data from Economist Impact (2022) and World
Bank (2024), Stata

of characteristics that countries have over time, that is, it is a
simultaneous combination of time series and cross-sectional data.
The model to be estimated is as follows:

yit=a+ﬂXVit+uit (1)

where y, is the dependent variable, in this case FSI, that changes
depending on i = 1,...,n (n = 86 the number of countries) and
t=1,...,T (T=9 the number of years), X, are exogenous variables:
ANNI, CO,, N,O, CH,, temperatures and arable land, as usual u,
are random disturbances. Ordinary Least Squares (OLS) estimates
will be biased as stated by Nickell (1981) and Arellano and Bover
(1990), even for samples with large values of #» and when T is
small, in this case n = 86 y T = 9. To avoid biases, alternative
estimates are proposed, such as estimates with dynamic panel data
models, thus obtaining unbiased, optimal, efficient and consistent
estimators. The use of panel data has several advantages because
it examines a greater number of observations with more and better
information, allowing for a greater number of variables and less
multicollinearity between data of the explanatory variables, as well
as greater efficiency in the estimation. It also solves the problem
of omitted variables, since variables that do not change over time
can be eliminated by taking differences. The dynamic model to
be estimated is as follows:

Vo=, X tu, ()

Where y, | is the lagged dependent variable. For the estimation
of dynamic panel data, the Generalized Method of Moments
(GMM) of Arellano and Bover (1995) is used. The GMM system
estimator uses difference equations that are instrumentalized with
the lags of the level equations, and also links instrumentalized
level equations with the lags of the difference equations (Bond,
2002). The system GMM estimator establishes relaxed conditions
to guarantee consistent estimators of the parameters even in
the presence of endogeneity and with unobserved individual-
country effects. This approach was developed by Arellano and
Bover (1995), and later includes improvements that were made
by Blundell and Bond (1998). The estimator thus obtained has
advantages over estimators such as Fixed Effects and others, since
it estimates unbiased parameters in small samples or in the presence
of endogeneity. The optimal GMM estimator consists of a system
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consisting of a regression that jointly contains information in levels
and in differences in terms of moment conditions (Arellano and
Bover, 1995).

Next, results of both static and dynamic panel data estimations
are shown. Table 5 presents the estimates of static panel data
models: Ordinary least squares (OLS), cross section (BS),
fixed effects (FE) and random effects (RE). The first column
of the table shows that the dependent variable is the logarithm
of the FSI, and all the independent variables are in logarithms,
the constant, the coefficient of determination R?, the Lagrange
Multiplier test, the Hausman test, and the number of countries and
observations. The second column of the Table 5 shows the OLS
estimation which indicates that the coefficients of /inna, lcarbono,
Imetano, lcultivable and the constant are significant, while the
coefficients of /nitroso and Iltemperatura are not significant,
finally the coefficient of determination R? is 0.5519. The third
column shows the cross-sectional BE estimates, the coefficients
of linna and ltemperatura are significant, while the coefficients
of the rest of the variables are not statistically significant; here
the coefficient of determination R? is 0.6310. The fourth column
presents the estimates by FE, the coefficients of linna, Icarbono,
Initroso, Icultivable and the constant are significant, while the
coefficients of methane and ltemperatura are not significant,
the coefficient of determination R? is 0.3567. The fifth column
shows the estimation by RE, the coefficients of linna, Imetano,
lcultivables and the constant are significant, while the coefficients

Table 5: Static panel data estimates

of Initroso and ltemperatura are not significant, the coefficient of
determination R? is 0.5519.

The Lagrange Multiplier test is also presented, which yields a prob
> chi2 = 0.0000, If the test is not rejected, there is no difference
between OLS and RE, and it is preferable to use the OLS method.
In this case, the null hypothesis is rejected indicating that the RE
estimate is preferable to the OLS estimate. The Hausman test is
then presented with prob > chi2 = 0.0000, the null hypothesis
is rejected, indicating that the FE and RE estimators differ
systematically and, therefore, the FE model is preferable. The null
hypothesis of Hausman’s test is that the RE and FE estimators
do not differ substantially, if the null hypothesis is rejected, as in
this case, FE is appropriate. In order to mitigate autocorrelation
problems, dynamic panel data models are estimated; the main
results are shown in Table 6. The estimates of dynamic panel data
models are presented: Generalized Method of Moments (GMM)
in differences in one stage and in two stages, GMM system in one
stage and in two stages. The first column presents the dependent
variable, the independent variables, the first and second order
serial autocorrelation tests, and the Sargan test. The second column
shows the estimation by GMM in differences in one stage, where
only the /lisalL1 coefficient is significant at 5%. The third column
shows the estimation by GMM in two-stage differences, where the
coefficients of lisalL1, Imetano, ltemperatura and the constant are
significant, the first-order serial autocorrelation is admitted and
the second-order serial autocorrelation is rejected, the Sargan test

Linna 0.1326165 (0.000) 0.1037076 (0.000) 0.1863675 (0.000) 0.1326165 (0.000)
Lcarbono 0.0116904 (0.000) 1.74¢-06 (0.899) 0.0198728 (0.000) 0.0116904 (0.000)
Lmetano —0.0216765 (0.092) —0.0280671 (0.199) —0.0038592 (0.799) —0.0216765 (0.092)
Lnitroso —0.0180011 (0.230) —0.0348851 (0.113) 0.0895547 (0.000) —0.0180011 (0.230)
Ltemperatura 0.0032746 (0.765) —0.0503539 (0.033) 0.0084504 (0.466) 0.0032746 (0.765)
Lcultivable 0.0358637 (0.004) 0.0019201 (0.895) 0.0643236 (0.019) 0.0358637 (0.004)
Constant 0.8845546 (0.000) 2.186384 (0.000) —1.800254 (0.000) 0.8845546 (0.000)
R? 0.5519 0.6310 0.3567 0.5519

ML BP Prob>Chi2=0.000
Hausman test Prob>Chi2=0.000
Number of countries 86 86 86 86
Number of observations 772 772 772 772

Source: Authors’ own elaboration with data from Economist Impact (2022) and World Bank (2024), Stata

Table 6: Dynamic panel data estimates with GMM

Lisall

Linna
Lcarbono
Lmetano
Lnitroso
Ltemperatura
Lcultivable
Constant

First-order serial correlation
Second-order serial correlation

Sargan test
Number of countries

Number of observations

0.7160727 (0.000)
0.0265567 (0.333)
0.0054623 (0.781)
~0.0786552 (0.138)
0.0249854 (0.534)
~0.0123598 (0.335)
~0.0210777 (0.626)
1.084793 (0.063)

Prob>Chi2=0.0834
86
598

0.7326047 (0.000)
0.0321352 (0.079)
~0.008681 (0.508)
~0.1056516 (0.000)
0.0231674 (0.251)
~0.0178474 (0.000)
~0.010355 (0.699)
1.300772 (0.001)
Prob>Z = 0.0002
Prob>Z = 0.5381
Prob>Chi2=0.4131
86
598

0.6522521 (0.000)
0.0439288 (0.000)
0.0043475 (0.363)
~0.0299939 (0.374)
0.0306109 (0.249)
~0.0104794 (0.388)
0.0067133 (0.758)
0.3070238 (0.073)

Prob>Chi2=0.0650
86
686

0.7211535 (0.000)
0.036371 (0.000)
~0.0034999 (0.444)
~0.0504645 (0.012)
0.027595 (0.097)
~0.0175947 (0.000)
~0.0327921 (0.021)
0.6539753 (0.000)
Prob>Z = 0.0001
Prob>Z = 0.5102
Prob>Chi2=0.2464
86
686

Source: Authors’ own elaboration with data from Economist Impact (2022) and World Bank (2024), Stata
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admits the validity of the instruments and the correct specification
of the model.

Likewise, the fourth column presents the one-stage system by
GMM, where the coefficients of /isaL.1 and linna are significant,
while the coefficients of the rest of the explanatory variables are
not significant. The fifth column shows the two-stage system by
Generalized Method of Moments, where the coefficients of lisalL1,
linna, Imethane, ltemperatura, Icultivable and the constant are
significant, the first-order serial autocorrelation is not rejected and
the second-order serial autocorrelation is rejected, the Sargan test
admits the validity of the instruments and the correct specification
of the model. Table 7 is presented below, the best-fitting model,
with all the significant coefficients and with the expected signs,
the first-order serial autocorrelation is admitted, the second-order
is rejected, the correct specification of the model is admitted.

4.5. Discussion of Panel Data Results

The estimates indicate that the logarithm of the FSI shows a
positive relationship with the lagged logarithm of the food
security index and with the logarithm of ANNI, on the other
hand, the logarithm of the FSI shows a negative relationship
with the logarithm of temperatures. The model estimated in two-
stage GMM system indicates that a 1% increase in ANNI will
have an impact of 3.85719% on the FSI, while a 1% increase in
temperatures causes a decrease of 1.68229% in the FSI in the
whole sample. In summary, empirical evidence shows that ANNI
has a positive impact on the FSI, that is, sustainable development
has a positive impact on food security. Moreover, increasing
temperature has negative effects on the FSI, that is, climate change
has negative effects on food security. This supports the interaction
of sustainable development, climate change, and food security. The
two-stage system GMM estimation is the model that best explains
the relationship between ANNI, temperatures and the FSI.

5. CLUSTER ANALYSIS

Cluster analysis will be used as an alternative research framework
to investigate the interactions among sustainable development,
climate change, and food security for the 86 countries. Cluster
analysis is used as a fitting multivariate statistic because of its
ability to identify inherent groupings among countries based on
various simultaneous similarities (Mooi et al., 2018). Mainly, the
use of the k-means clustering algorithm has been based on its
efficacy in sustainability research regarding pattern identification

Table 7: Best model

Dependent variable: Lisa GMM system (two stages)

Lisall 0.7026126 (0.000)
Linna 0.0385719 (0.000)
Ltemperatura —0.0168229 (0.000)
Constant 0.299228 (0.001)

First-order serial correlation Prob>Z = 0.0001
Second-order serial correlation Prob>Z =0.4910
Sargan test Prob>Chi2=0.4193
Number of countries 86

Number of observations 686

In parentheses the corresponding standard error. Source: Authors’ own elaboration with
data from Economist Impact (2022) and World Bank (2024), Stata

among countries in terms of environmental and economic
indicators (Xu and Wunsch, 2010). The k-means algorithm works
by dividing observations into k groups minimizing the within-
cluster sum of squares (WCSS) that is represented as:

WCSS = Zklzx —u? 3)

i=1 xeC;

Where C, is the i cluster, x is an observation (country) in that
particular cluster, and u, is the centroid of cluster C, (Lloyd,
1982). To minimize this function, the algorithm creates clusters
where each group of countries has maximum internal similarity
and a maximum difference with other nations located in other
clusters. The data preprocessing that preceded running the k-means
algorithm involved a normalization process to optimize results.
Since the seven variables under study had very diverse scales that
ranged from percentages for arable land to trillions of USD for
ANNI and millions of kilotons for emissions, normalization had
to be used to prevent large-magnitude variables from affecting the
process of clustering (Kassambara, 2017). Z-score normalization
is carried out by applying z = (x—u)/0, where x represents the
original value of a variable for a given country, u is the mean of
that variable across all countries, and o is the standard deviation
for all countries. After normalization, the optimal cluster size is
determined using two more approaches: the elbow method and
silhouette analysis (Kodinariya and Makwana, 2013). The elbow
method evaluates the relationship between the within-cluster sum
of squares and cluster size and picks out at what point adding more
clusters provides decreasing returns. On the other hand, silhouette
analysis measures how well every country is assigned to its cluster
to other clusters, hence giving a measurement of cluster cohesion
and separation. The silhouette value for a particular country i:

b(i)-a(i)

) = el (4)

Where a(i) refers to the average distance between country i and
other countries in the same cluster, and b(i) refers to the average
distance between country i and its closest neighboring cluster
(Rousseeuw, 1987). The average silhouette width for all countries
is used to measure cluster effectiveness and ranges from —1 to
1; higher values indicate better separation between clusters. The
findings of the optimization analysis are presented in Figure 7.
The left panel of Figure 7 shows the WCSS as a function of
cluster numbers, representing the elbow technique. The right
panel displays silhouette values for different cluster numbers.
The graph of WCSS displays a clear elbow at k = 2 where the
value of WCSS goes down from 403.16 atk =2 to 302.34 atk =
3, representing a decrease of 25%. After this point, the decreased
slope is increasingly smaller.

The silhouette analysis in the right panel of Figure 7 confirms a
peak silhouette value of 0.73 at k = 2. This result reflects high
cohesion within the clusters and good separation between them.
Considering configurations with more than a significant cluster
number (k = 4 and k = 5), the resulting silhouette values are
moderately reduced at 0.32 and 0.31, respectively, much less than
that found at k = 2. Combining the results of both approaches as
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presented in Table 8, k =2 is most appropriate for cluster numbers
for the given data, with an optimal balance between model
parsimony and explanatory sufficiency. This agrees with current
advice in cluster research practice (Madhulatha, 2011; Kodinariya
and Makwana, 2013). The k-means algorithm successfully
partitioned the sample of 86 nations into two well-differentiated
clusters with very different features. The mean values for every
variable by cluster are presented in Table 8. Appendix 1 contains
the countries belonging to each cluster.

Cluster 1 contains 84 countries (97.7% of the sample) and is
characterized by relatively lower food security (mean FSI =
61.28), substantially lower ANNI (358 billion USD), higher CO,
emissions (763 million tons), lower methane and N,O emissions,
higher average temperatures (18.49°C), and a slightly higher
percentage of arable land (18.41%).

Contrasting sharply with this trend is Cluster 2, which contains
only two members: China and the United States, making it a
notable outlier in the analysis. This cluster has very high levels of
food security (mean FSI =73.56), a very high ANNI (12.3 trillion
USD), low CO, emissions (45.4 million tons), as well as very
high emissions of CH, (926 million tons) and N,O (399 million
tons), reduced average temperatures (12.59°C), and relatively
lower arable land.

5.1. Visual Analysis of Cluster Distributions

Figure 8 displays a radar plot that presents the two groups’
standardized profiles, thus capturing a multivariate overview of
the distinctive profiles that make the groups unique. Figure 8
successfully communicates a graphical representation of the
intricate patterns revealed by the cluster analysis, thus facilitating
easy comparison of the concurrent fluctuations of the seven
variables across the groups.

The radar plot displays the important differences in the attributes of
Cluster 1 (in purple) and Cluster 2 (in yellow). Cluster 2, including

the United States and China, displays a distinctive pentagonal
shape with significant extensions along the three dimensions of
ANNI, CH, and N,O emissions. Standardized values for the two
nations along these three dimensions are significantly higher than
those of Cluster 1. Most strikingly, the enormous difference in
income, with Cluster 2 nearing the maximum normalized value,
underscores the incredible economic power of the two nations.

The Food Security dimension has high values for Cluster 2, yet
the level of disparity is not comparable to that found regarding
economic resources. This result is supported by econometric
tests showing a positive correlation between ANNI and FSI. It is
concluded that the high economic progress achieved by China and
the United States is a factor of greater food security. Notably, while
nations in Cluster 2 present high methane and N,O emissions,
their normalized CO, emissions are lower than those in Cluster
1. This paradoxical result, backed by scatter plot analyses, can
be explained by differences between the two clusters in terms of
their economies’ structure and energy use efficiency. While being
significant emitters in absolute terms, the United States and China
may show a more efficient use of carbon compared to the economic
performance of some countries in Cluster 1 that have followed
carbon-intensive development paths (Friedlingstein et al., 2024).

The temperature dimension shows that Cluster 2 has lower
temperatures than Cluster 1, which is consistent with the
geographical locations of China and the United States in temperate
climatic regions. Conversely, many countries in Cluster 1 are
in tropical and desert regions with high average temperatures.
This difference may partially explain the higher levels of food
security in Cluster 2, as extreme temperatures are known to harm
agricultural productivity (Ortiz-Bobea et al., 2021).

The characteristic of arable land suggests that the two groups have
comparatively similar standardized scores, meaning that the ratio of
land used for farming cannot be a differentiating factor. As a result,
it suggests that the quality and effectiveness of land use, as opposed

Figure 7: Elbow and silhouette analysis
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Table 8: Clustering and centroid results

Cluster Food security index  Adjusted net national income
Cluster 1 61.28 357579495315.89
Cluster 2 73.56 12333024062682.40

Co, Methane N, O Temperature  Arable land
763029.90  44759.89 15807.71 18.49 18.41
45420.07  926166.98  398983.49 12.59 14.54

Source: Authors’ elaboration
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to the mere area of land available, could have a more important
function in explaining differences in the level of food security.

The radar plot, in Figure 8, is a key tool for presenting the
intricate, multi-dimensional relationships between sustainable
development, indicators of climate change, and food security. The
different configurations of the two groups emphasize the varying
modes of interaction about economic resources, greenhouse gas
emissions, and climatic conditions among the two groups of
nations, thus demonstrating trends that could remain hidden with
univariate or bivariate analyses. The vast discrepancies among
the geometries of the two groups also support the contention that
China and the United States operate under significantly different
conditions regarding the dynamics of sustainable development,
climate change, and food security compared to the global scale.
The extensive economic resources owned by these nations offer
a protective shield against the potentially harmful effects of high
methane and nitrous oxide emissions on the security of foods. This
trend is absent in most other nations (Fan et al., 2021).

Figure 8: Radar plot for clustering
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5.2. Cluster Analysis Removing China and USA

After identifying the unique roles of China and the United States,
another cluster analysis is carried out on the remaining group of
84 countries to examine more complex patterns. Figure 9 presents
the optimization results relevant to the overall analysis. The
elbow method (left plot) discloses a more subtle trend than the
first analysis, with a sharp decline from 2 to 4 groups and a muted
decline thereafter. The silhouette analysis (right plot) shows best
values at k =5 (0.293) and k = 8 (0.304), suggesting significant
groupings at the indicated levels.

Considering the methods utilized and the nature of the results
achieved, the eight-cluster solution was chosen for the next step
of the analysis. It produces a more precise typology of country
profiles with the added advantage of having good silhouette
scores. The eight-cluster solution identifies discrete groupings
of nations with different profiles across the seven variables of
concern presented in Table 9. Countries included in each group
are presented in Appendix 2.

Cluster 1 has 23 countries with high food security (73.02), medium
income (422 billion USD), medium CO,, and low methane and
N,O emissions, combined with cooler climates (11.72°C) and
medium shares of arable land (15.37%). Developed European
countries and industrialized economies like Austria, Finland,
Italy, the Netherlands, New Zealand, Norway, South Korea, and
Switzerland comprise this category.

Cluster 2 (31 countries): Low food security (53.12), low income
(113 billion USD), moderate CO, emissions, low-to-moderate
methane and N,O emissions, high temperatures (24.74°C),
and low arable land (11.30%). This cluster comprises mainly
developing countries in Africa, the Middle East, and Southeast
Asia, including Algeria, Angola, Ethiopia, Kenya, Kuwait,
Madagascar, and Saudi Arabia.

Cluster 3 (Brazil): Moderate food security (66.68), low income
(44.2 billion USD), very low CO, emissions, very high methane
(438,255 kt) and N,O emissions (175,325 kt), high temperatures
(24.82°C), and low arable land (6.55%). Brazil stands alone due
to its unique combination of moderate food security despite high
emissions from agriculture and deforestation.

Figure 9: Elbow and silhouette analysis excluding China and the United States
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Table 9: Clustering and centroids results excluding China and the United States

Cluster 1 73.0 422076707297.9
Cluster 2 53.1 113173196675.4
Cluster 3 66.7 44190231919.9
Cluster 4 62.1 55610355590.2
Cluster 5 712 2733192851666.8
Cluster 6 55.6 57602925111.8
Cluster 7 58.7 615884260119.4
Cluster 8 66.3 1119394668514.8

162197.2 17558.7 7832.1 11.7 15.4
257862.5 32747.2 10943.8 24.7 11.3
19956.5 438255.1 1753255 24.8 6.5
10983355.1 19028.4 4380.5 234 7.2
81863.5 48505.9 30783.5 11.7 26.0
339606.3 13395.9 7498.2 17.6 43.1
543553.4 142877.8 54039.2 17.2 15.4
73597.6 587615.2 63261.1 2.6 7.4

Source: Authors’ elaboration

Cluster 4, which has four countries, exhibits a moderate food
security level (62.10), a low-income level (55.6 billion USD), very
high CO, emissions (10,983,355 kt), low emissions of methane
and N, O, high-temperature averages (23.39°C), and low arable
land (7.24%). This small cluster includes Céte d’Ivoire, Ecuador,
Oman, and Uruguay and is characterized by extremely high carbon
emissions compared to economic productivity.

Cluster 5 (4 countries): Very high food security (77.24), very high
income (2.73 trillion USD), moderate CO, emissions, moderate
methane and N,O emissions, cool temperatures (11.68°C),
and high arable land (25.99%). This cluster comprises major
European economies and Japan: France, Germany, Japan, and
the United Kingdom.

Cluster 6, which has 14 countries, is defined by low food
security (55.64), low-income level (57.6 billion USD), medium
carbon dioxide emission, very low methane and nitrous oxide
emissions, mean temperatures (17.55°C), and high percentage
of arable land (43.13%). This cluster includes countries with
agricultural potential but with food security constraints, such as
Bangladesh, Belgium, Bulgaria, Denmark, Hungary, Romania,
and Ukraine.

Cluster 7 (6 countries): Moderate food security (58.66), high
income (616 billion USD), high CO, emissions, high methane and
N,O emissions, moderate temperatures (17.22°C), and moderate
arable land (15.39%). This cluster includes large economies
with significant agricultural and industrial sectors: Argentina,
Cameroon, Canada, Indonesia, Mexico, and Pakistan.

Cluster 8 (Russia): Moderate food security (66.33), high income
(1.12 trillion USD), moderate CO, emissions, very high methane
emissions (587,615 kt), moderate N,O emissions, very low
temperatures (2.59°C), and low arable land (7.43%). Russia
forms its cluster due to its unique combination of extreme cold,
high methane emissions, and moderate food security despite
challenging climatic conditions.

5.3. Visual Analysis of Cluster Distributions Excluding
China and the United States

The radar plot in Figure 10 displays the specific features of each of
the eight clusters in comparison to the seven normalized variables
under study.

The radar plot for the clustering analysis in Figure 10, excluding
China and the United States, provides the following results:

Figure 10: Radar plot for clustering excluding China and the
United States
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Economic-food security relationship: Clusters with higher
normalized income values (Clusters 5 and 7) also tend to show
higher food security, reinforcing the positive relationship in
the econometric analysis.

Different groups have different emission patterns. Cluster 3,
Brazil, and Cluster 8, Russia, have high methane emissions,
and Cluster 4 shows relatively high CO, emissions. These
show that policies to address climate change mitigation need
to be tailored to suit the unique characteristics of a particular
country.

Temperature-food security relationship: Clusters with
the highest food security (Clusters 1 and 5) have lower
temperatures, while clusters with the lowest food security
(Clusters 2 and 6) tend to have higher temperatures, supporting
the negative temperature-food security relationship found in
the econometric analysis.

Cluster 6 has a very high measure for arable land but, at the
same time, shows relatively low food security levels. The
finding suggests that access to land alone does not guarantee
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food security if economic resources and efficient agricultural
methods are lacking.

Complete cluster analysis yields more complex patterns than the
initial two-cluster solution. While the China-US cluster remains
prominent with its great economic size, the more sophisticated
examination finds excellent differences in how different groups of
nations prioritize economic development, environmental issues,
and food security. These findings emphasize the need for policy
intervention attuned to the unique needs and opportunities faced
by different groups of nations.

5.4. Discussion of Cluster Results

Cluster analysis identifies a broad hierarchical distinction
across the international landscape of sustainable development,
climate change, and food security. At the top level, a striking
disparity exists between China and the USA (labeled as Cluster
2 in the initial analysis) and the rest of the world (Cluster 1),
highlighting the outstanding economic hegemony as well as the
greenhouse gas emitting patterns of these two nations (Crippa
et al., 2023). The radar plots (Figures 8 and 10) indicate this
overarching division, with Figure 8 highlighting the sharply
divergent profiles of these two economic giants compared to
the rest of the world.

The significant economic power displayed by the United States and
China, as measured using the Agricultural Nutritional Index (ANI),
appears to augment their respective food security indicators, even
under high CH, and N,O emissions. The findings also show that
economic assets can counter climate change’s impacts on food
stability, in addition to supporting the findings of Fan et al. (2021)
and Tubiello et al. (2022). The uneven distribution of economic
resources, as presented in Figure 8, highlights that wealth is
distributed in two nations only, affecting the development of world
policies to achieve the goal of food stability.

The exclusion of China and the United States allows a more
in-depth examination that identifies eight distinct clusters
(Figure 10), with the first Cluster 1 showing particular diversity.
The cluster solution with more points allows for the identification
of several subcategories with distinct features: advanced
economies with high food security and moderate emissions
(Clusters 1 and 5), developing economies with low food security
and varying patterns of emissions (Clusters 2, 4, and 6), and
exceptional case examples such as Brazil (Cluster 3) and Russia
(Cluster 8), which are represented as singleton clusters with a
unique set of variables.

Advanced cluster analysis confirms the correlation of economic
resources with food security as evidenced by Cluster 5, which
consists of France, Germany, Japan, and the United Kingdom, with
the highest food security indexes (77.24) along with high ANNI
values of 2.73 x 102 USD. However, the research identifies that
the correlation is not simple. For instance, the nations that belong
to Cluster 6 have a high percentage of cultivable land (43.13%)
but have relatively low food security of 55.64, which suggests that
land is not a guarantee of food security if economic resources and
proper farm systems are lacking.
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Temperature patterns across different cluster groups provide
improved insights into the temperature-food security relationship.
Clusters with the best conditions supporting food security
(Clusters 1 and 5) have the lowest average temperatures
documented (11.72°C and 11.68°C, respectively), while those with
compromised food security, such as Cluster 2, have the highest
average temperature of 24.74°C. The above finding is corroborated
by findings of econometric studies that have revealed a negative
relationship between temperature and the level of food security,
thus supporting past studies that posit an adverse effect of rising
temperatures on farm productivity in areas that already enjoy
high-temperature conditions (Ortiz-Bobea et al., 2021; Tigchelaar
et al., 2023).

The heterogeneous relationship between greenhouse gas emissions
and food security across different groupings, as demonstrated
through radar plots and univariate analyses, indicates that one-size-
fits-all policy-making to address the climate emergency could be
ineffective or even counterproductive if it ignores these underlying
structural differences (Barrett et al., 2022). For example, the
economies grouped in Cluster 4 have notably high CO, emissions
in their economic output compared to other groupings, pointing
to specific challenges in the transition to low-carbon development
pathways, while Clusters 3 and 8 face specific challenges with
methane emissions.

Many countries in Clusters 2 and 6 also face reduced food
security and shrinking economic means, thus pointing to increased
vulnerability to the impacts of climate change. Such an observation
aligns with research findings showing that economically vulnerable
countries face disproportionately high barriers to adequately re-
structuring their food systems to respond to climate change’s
impacts (Niles etal., 2021; Kummu et al., 2021). The radar charts
in Figures 8 and 10 are handy in depicting these multifaceted
vulnerabilities, showing how different clusters face distinct
combinations of challenges across the seven variables considered.

6. CONCLUSION

The empirical evidence presented in this research reveal that GHG
emissions such as CO,, CH,, and N,O, which cause an increase
in temperature and are used in this work as proxies for climate
change, have negative effects on the Food Security Index, while
ANNIE, a proxy for sustainable growth, has a positive impact
on the Food Security Index. Greater efforts to increase ANNIE
for environmental degradation, as well as a decrease in GHG
emissions and temperature would contribute to promoting food
security in the 86 economies analyzed in this research, which will
result in the well-being of the world population.

The impact climate change on food security and sustainable
development is assessed in 86 economies, whose information
is available in the period 2012-2020. The empirical evidence
from the best model, two-step system GMM dynamic panel data,
supports the hypotheses of this work: There is a positive impact
of sustainable development on food security and a negative effect
of climate change on food security, in the countries that were
the object of this investigation. Derived from this research, it is
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suggested that decision makers create and implement strategies
to promote sustainable development, as well as mitigate climate
change, reduce CO,, CH,, and N,O emissions, and stabilize
temperatures, to boost food security, as well as contribute to the
well-being of the world population.

The results obtained from cluster analysis complement the
econometric analysis by clarifying structural differences between
countries that panel data models might overlook. Initially, two
clusters are identified: One with only two members, China and
the United States, and the other with the remaining countries.
Subsequently, a cluster analysis is performed that eliminates China
and the United States to identify more complex patterns. In this
case, eight clusters are identified that share similar characteristics
in the dynamics of all the variables under study, allowing for a
more in-depth examination. There are now two clusters with only
one member, Brazil and Russia. Other cluster is determined by
France, Germany, Japan, and the United Kingdom, all of them
from G7. The largest cluster includes 31 countries. Radar charts
allow the specific characteristics of each of the eight clusters to
be visualized in relation to all the variables under study.

It worth noting that the empirical findings obtained from cluster
analysis in eight groups are more complex than often assumed
and vary significantly according to countries’ development
stages and structural characteristics. These results have important
implications for environmental policy design, suggesting the need
for cluster-specific approaches rather than the one-size-fits-all
solutions typically proposed in econometric approaches.

Finally, more research is needed to include more countries and
more years when data are available. In addition, future research
will use alternative causality tests that include machine learning
and neural networks.
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Appendix 1: Clustering including all countries

APPENDIX

Algeria, Angola, Argentina, Austria, Azerbaijan, Bahrain, Bangladesh, Belarus, Belgium, Benin, Botswana, Brazil,
Bulgaria, Burkina Faso, Burundi, Cambodia, Cameroon, Canada, Colombia, Congo (Dem. Rep.), Costa Rica, Czech
Republic, Cote d’Ivoire, Denmark, Dominican Rep., Ecuador, Egypt, El Salvador, Ethiopia, Finland, France, Germany,
Ghana, Greece, Haiti, Hungary, Indonesia, Israel, Italy, Japan, Kazakhstan, Kenya, Kuwait, Laos, Madagascar,
Malaysia, Mali, Mexico, Nepal, Netherlands, New Zealand, Nicaragua, Norway, Oman, Pakistan, Paraguay, Peru,
Philippines, Poland, Portugal, Romania, Russia, Rwanda, Saudi Arabia, Senegal, Serbia, Sierra Leone, Slovakia, South
Africa, South Korea, Spain, Sri Lanka, Sudan, Sweden, Switzerland, Tajikistan, Tanzania, Togo, Tunisia, Uganda,
Ukraine, United Arab Emirates, United Kingdom, Uruguay

China, United States

Appendix 2: Clustering excluding China and the United States

Cluster 1

Cluster 2

Cluster 3
Cluster 4
Cluster 5
Cluster 6

Cluster 7
Cluster 8
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Austria, Azerbaijan, Belarus, Botswana, Costa Rica, Czech Republic, Finland, Greece, Israel, Italy, Kazakhstan,
Netherlands, New Zealand, Norway, Peru, Poland, Portugal, Slovakia, South Korea, Spain, Sweden, Switzerland, Tajikistan
Algeria, Angola, Bahrain, Benin, Burkina Faso, Cambodia, Colombia, Congo (Dem. Rep.), Dominican Rep., Egypt,
Ethiopia, Ghana, Kenya, Kuwait, Laos, Madagascar, Malaysia, Mali, Nepal, Nicaragua, Paraguay, Philippines, Saudi
Arabia, Senegal, Sierra Leone, South Africa, Sri Lanka, Sudan, Tanzania, Tunisia, United Arab Emirates

Brazil

Cote d’Ivoire, Ecuador, Oman, Uruguay

France, Germany, Japan, United Kingdom

Bangladesh, Belgium, Bulgaria, Burundi, Denmark, El Salvador, Haiti, Hungary, Romania, Rwanda, Serbia, Togo,
Uganda, Ukraine

Argentina, Cameroon, Canada, Indonesia, Mexico, Pakistan

Russia
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