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ABSTRACT

Sustainable finance requires decision-support tools capable of integrating financial indicators with environmental and social risk factors in a transparent and data-
driven manner. This study introduces a hierarchical multi-criteria sorting approach for the evaluation of electricity generation technologies, aimed at informing 
capital allocation and investment screening decisions. The framework relies exclusively on quantitative criteria obtained from public datasets and organizes 
them into a structured hierarchy encompassing economic performance, technical reliability, system relevance, and environmental and health impacts. Interval-
valued evaluations and preference parameters are employed to represent uncertainty and heterogeneity in financial decision contexts. The resulting range-based 
classifications distinguish technologies according to their overall acceptability from a sustainable finance perspective. Results for the U.S. electricity sector 
highlight the ability of the approach to support responsible investment decisions under multiple, potentially conflicting financial and sustainability considerations.
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1. INTRODUCTION

Electricity generation technologies are the pillar of modern energy 
systems and play a fundamental role in economic development, 
environmental sustainability, and social well-being. Decisions 
regarding the implementation and expansion of generation 
technologies have long-term implications for energy costs, 
greenhouse gas emissions, land use, public health, and energy 
security. As energy systems suffer a rapid transition driven by 
climate goals, technological innovation, and regulatory changes, 
the need for a systematic and transparent assessment of electricity 
generation options becomes critical.

The evaluation of electricity generation technologies is inherently 
a multidimensional problem. Technologies differ in their 

investment and operating costs, as well as in their emissions 
profiles, local environmental impacts, land-use requirements, and 
health and safety implications. These dimensions often involve 
conflicting objectives: technologies with low capital costs may 
have high emissions or health impacts, while technologies with 
favorable environmental performance may face higher upfront 
costs or spatial limitations. Therefore, relying only on single 
indicators, such as the levelized cost of electricity (LCOE) or 
carbon intensity, can provide a misleading basis for decision-
making. Thus, multi-criteria decision analysis (MCDA) has been 
widely employed to support energy planning and technology 
assessment. MCDA frameworks enable decision-makers to 
integrate heterogeneous criteria into a structured evaluation 
process, improving transparency and facilitating the comparison 
of diverse technological options.
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Despite the widespread use of MCDA in energy planning and 
technology assessment, the current literature presents several 
methodological limitations. First, many studies rely on fully 
compensatory aggregation (e.g., additive value models or weighted 
sums) or hybrid ranking procedures, where good performance in 
one dimension can offset poor or unacceptable performance in 
others. This is often problematic in energy policy contexts, where 
non-negotiable requirements exist (e.g., extremely bad emissions 
or public health effects), and can reduce the interpretability of the 
results for decision-makers (Sahabuddin and Khan, 2021).

Second, much of the literature is concentrated on assessing 
technology to produce a ranking rather than an evaluation to produce 
the sorting of the alternatives (i.e., assigning the technologies to 
preferentially ordered classes). In practice, policymakers often 
need to assign technologies to ordered categories such as “highly 
sustainable,” “acceptable,” or “unacceptable,” which is more 
aligned with selection, eligibility standards, and strategic planning 
in decision aiding than with establishing a strict ranking. While 
multi-criteria classification models have been consolidated and 
analyzed within the decision-support community, their systematic 
use in energy technology assessment remains rather limited 
(Belahcène et al., 2024).

Third, existing studies often employ flat lists of criteria, even 
when the decision context naturally suggests a hierarchical 
structure (e.g., environmental impact broken down into climate, 
local pollutants, land use, and water impacts). Flat structures limit 
the ability to audit decisions and understand the contribution of 
each dimension at different levels of aggregation. Hierarchical 
ranking methods exist, such as the Multi-Criteria Hierarchy 
Process (MCHP) combined with ELECTRE TRI, but they 
are not yet routinely adopted in energy assessment workflows 
(Corrente et  al., 2016). Fourth, uncertainty is often addressed 
through informal sensitivity analyses, maintaining both precise 
assessments and preference parameters. However, to a certain 
extent, energy technology indicators often vary due to data 
heterogeneity (e.g., life-cycle assessment ranges), contextual 
variability, and incomplete articulation of stakeholder preferences. 
Interval modeling provides a robust way to represent imperfect 
knowledge and incomplete preference information in ordinal 
ranking based on the outranking approach (Fernández et al., 2019; 
Fernandez et al., 2020). However, the integration of (i) hierarchical 
criteria structures, (ii) interval-based criteria scores and preference 
representation, together with (iii) the evaluation of electricity 
generation technologies has remained unexplored.

Therefore, this work addresses these limitations by proposing 
a multi-criteria hierarchical classification framework to assess 
electricity generation technologies, designed to be transparent, 
auditable, and robust to imperfect information. The proposed 
approach offers three methodological advances. First, the 
evaluation criteria are structured hierarchically, reflecting 
the decomposition used in energy planning and enabling 
consistent aggregation across levels (Corrente et al., 2016); the 
proposal structures the assessment using a hierarchy of criteria 
encompassing techno-economic performance, local environmental 
impacts, climate-related emissions, land-use intensity, and health 

and safety effects. Second, the framework allows evaluation at 
any level of the hierarchy, generating not only an overall class 
assignment but also intermediate-level assignments that provide 
diagnostic information on whether a technology is primarily 
disadvantaged by economic performance, local pollutants, climate 
impacts, or land-use constraints. Third, both (a) the scores for the 
alternative criteria and (b) the parameters representing decision-
makers’ preferences are modeled using intervals, allowing the 
model to reflect data variability and preference imprecision 
in a unified manner (Fernández et al., 2019; Fernandez et al., 
2020; Fernández et al., 2022a). A case study is used to show the 
applicability of the proposal. All criteria used in this case study 
are based on quantitative indicators obtained directly from public 
databases, ensuring transparency, consistency, and reproducibility.

The remainder of the paper is organized as follows: Section 2 
describes the related work; Section 3 details the criteria hierarchy, 
datasets, and the proposed hierarchical interval sorting model; 
Section 4 presents the empirical study for six major electricity 
generation technologies in the United States; and Section 5 
discusses policy implications, limitations, and future research 
directions.

2. LITERATURE REVIEW

The evaluation of electricity generation technologies has 
been widely addressed in the literature due to the economic, 
environmental, and social implications associated with technology 
choice (Filemon et al., 2025; Hemmati et al., 2024; Undurraga 
et al., 2024). Conventional and renewable generation options 
differ substantially in terms of investment and operating costs, 
emissions, land use, and impacts on human health. As a result, this 
problem has been commonly formulated as a multi-dimensional 
decision task that requires the simultaneous consideration of 
heterogeneous and often conflicting criteria (Barros et al., 2020; 
Mardani et al., 2021).

Several review studies highlight the widespread adoption 
of MCDA in the energy sector and emphasize its ability to 
accommodate economic, environmental, technical, and social 
indicators within a single analytical framework (Mardani et al., 
2021). For example, (Hernández-Torres et al., 2025) proposed an 
integrated MCDA framework using a hybrid combination of AHP 
and a distance-based method to assess the sustainability of power 
generation technologies, illustrating how trade-offs among cost, 
emissions, and reliability criteria can be managed in technology 
selection. Similarly, (Şengül et al., 2015) applied fuzzy TOPSIS 
to rank renewable and conventional generation options under 
economic and environmental criteria, highlighting the importance 
of simultaneously considering multiple performance indicators in 
energy planning decisions. Amiri et al. (2024) used AHP–TOPSIS 
in a case of grid capacity expansion, but acknowledged that 
compensatory aggregation may mask serious trade-offs between 
economic and environmental criteria.

These are examples of ranking-oriented methods. In practice, 
however, energy planning and policy decisions often require 
broader classifications, such as determining whether a technology 
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is acceptable or unacceptable, or assigning technologies to priority 
groups for deployment. Therefore, this type of methods can be 
unrealistic in real-world energy decision contexts when energy 
planners and policymakers aim to classify technologies into 
ordered categories, such as “highly sustainable”, “acceptable”, 
or “unsuitable”, to support regulatory thresholds, eligibility 
rules, or strategic roadmaps. Multiple-criteria sorting models 
provide a natural framework for assigning alternatives to 
ordered classes based on their multi-dimensional performance 
(Figueira et al., 2005).

Within the family of MCDA methods, outranking-based sorting 
methods, such as ELECTRE TRI, are particularly attractive 
because they support non-compensatory reasoning and allow 
for the explicit treatment of discordance. Recent surveys have 
consolidated the theoretical foundations of this type of sorting 
methods and clarified their relevance for policy-oriented decision 
problems (Bouyssou et al., 2024). Dell’Anna (2023) demonstrated 
the use of ELECTRE TRI-C to classify energy efficiency projects 
into priority tiers, illustrating the practical value of sorting when 
stakeholders require assignment to discrete categories rather 
than rankings. Bouyssou et al. (2024) provided a comprehensive 
overview of multiple-criteria sorting approaches, underscoring 
their theoretical foundations and suitability for problems where 
thresholds and veto effects are critical.

Despite the evident attractiveness of these methods, a lack of 
clarity in the data aggregation process has been acknowledged 
(Sahabuddin and Khan, 2021). In practice, the weighting process 
can be carried out by several experts, but inconsistencies may 
exist. Recent advances in sustainability assessment recognize 
the greater sensitivity of the weighting process, which has been 
acknowledged as an important step in the MCDA, enabling the 
integration of different stakeholders (Wulf et al., 2023).

Interval modeling is a method for addressing imperfect 
knowledge. Fernández et al. (2019) introduced an interval-based 
classification approach for multi-criteria ordinal classification 
(sorting) problems, illustrating the incorporation of interval-
valued information into classification rules (Fernández et al., 
2019). Building on this (Fernández et al., 2020) introduced further 
interval-based extensions for ordinal classification problems for 
ELECTRE TRI-type outranking methods to address candidate 
assignments in terms of imperfect knowledge.

In parallel, several authors have emphasized the importance of 
hierarchical criteria structures in complex decision problems. Energy 
technology assessment often involves natural decompositions 
(e.g., environmental impact can be subdivided into climate 
change, local air pollutants, land use, and water consumption). 
Corrente et al. (2016) address this gap by introducing the Multiple 
Criteria Hierarchy Process (MCHP) for ELECTRE TRI methods, 
enabling sorting decisions with hierarchically structured criteria 
and consistent weight propagation across levels. While this 
contribution provides a rigorous methodological foundation, 
its application in energy technology evaluation remains scarce, 
particularly in studies aiming at policy-relevant classification. 
Recently, hierarchical interval outranking classification models 

have been proposed to represent both the hierarchy and more 
complex preference models, such as interactions between criteria. 
The work of (Fernández et al., 2022a) presents a hierarchical, 
interval-based ranking model with interactive criteria, capable of 
representing synergy and redundancy effects, as well as ranking for 
assessments with interval values. These models appear particularly 
important for energy technology assessment, since many key 
indicators (life cycle emissions, land-use intensity, health risks, 
etc.) are intrinsically based on intervals.

One disadvantage of MCDA in applied energy is the reproducibility 
problem, as the data have been collected using undisclosed research 
methods or scoring systems due to uncertain sources. On the other 
hand, an experimental design with data-driven analysis may help 
improve reproducibility. For the US, the National Renewable Energy 
Laboratory’s Annual Technology Baseline provides a comprehensive 
resource that documents the current cost and performance 
characteristics of generation options in a manner suitable for 
comparative analysis (Mirletz et al., 2024). Regarding comparative 
data on other impacts, related metrics are provided in aggregate by 
generation type. An interesting set of databases, Our World in Data, 
offers downloadable comparative data on deaths per Terawatt-hour 
(TWh) and land-use intensity per MWh in a harmonized format, 
summarizing findings from peer-reviewed literature in relevant 
published reports (Our World in Data, 2022; 2025).

However, despite the fact that these datasets are open to the public, 
a methodological gap persists in the research: most empirical 
studies fail to integrate three aspects: (i) Hierarchical classification, 
(ii) multilevel evaluation results, and (iii) interval modeling of both
performance and preferences within a general framework. This
article addresses this research gap and proposes a methodology
as a transparent and auditable decision support system for the
hierarchical classification of electricity generation technology into
classes ordered according to their sustainability characteristics.

3. METHODOLOGY

This section presents the methodological framework used to 
evaluate electricity generation technologies. It describes the 
formulation of the decision problem, the hierarchical structure 
of criteria, the modeling of alternatives’ performances, and the 
decision rules applied to assign technologies to ordered classes.

The proposed approach relies on a hierarchical multi-criteria 
sorting model and explicitly accounts for imperfect information 
by allowing both criteria evaluations and preference parameters to 
be represented as intervals. The methodology is designed to ensure 
transparency, consistency across levels of the criteria hierarchy, 
and robustness of the final results and recommendations.

3.1. Problem Formalization
Let A = {a1,a2,…,an} be the finite set of alternatives, where each 
alternative ai represents an electricity generation technology 
(e.g., coal, wind, solar).

The evaluation is conducted with respect to a finite set of criteria 
structured as a hierarchy. Let   denote the set of all criteria nodes 
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in the hierarchy (see Subsection 3.2 for more details) and let 
 E ⊂  be the subset of elementary criteria (i.e., leaves of the 
hierarchy). Each non-elementary criterion aggregates the 
information provided by its direct descendants (children).

For each alternative a ∈ A and each elementary criterion g E∈ , 
the performance of a on g is denoted by g(a), which represents a 
quantitative indicator (e.g., cost, emissions, land use). Due to 
uncertainty in the recollection of the data or imprecisions in the 
real world, many times the exact value of g(a) is unknown. To 
account for data variability and imperfect information, these 
performances are modeled as intervals:

g a g a g a( ) [ ( ), ( )]=

where g a( )  and g a( )  denote, respectively, the lower and upper 
bounds of the plausible performance of alternative a on criterion g.

The decision problem is then formulated as an ordinal classification 
(sorting) problem, where C = {C1,C2,…,Cp} is a finite and totally 
ordered set of classes, such that

C C Cp1 2≺ ≺�≺ , and higher-indexed classes correspond to 
higher levels of overall sustainability performance (i.e., Ci is more 
desirable than Cj; i > j).

The goal is to determine the most convenient assignments (from 
the perspective of a decision maker) of each alternative a ∈ A to 
at least one class Ch ∈ . Such assignments are based on a 
hierarchical outranking-based sorting model. For this purpose, 
preference information from the decision maker is specified at 
each node (criterion) of the hierarchy. For example (see 
Subsections 3.4 and 3.5 for more details), let wg denote the relative 
importance (weight) of criterion g, and let additional preference 
parameters (e.g., thresholds or cutting levels) be defined as 
required by the sorting procedure (Subsection 3.5). In line with 
the treatment of imperfect information, these parameters may also 
be represented as intervals:

w w wg g g∈[ , ]

At each non-elementary criterion, the model aggregates the 
outranking relations of its descendants, ensuring consistency with 
the hierarchical structure. This aggregation allows the evaluation 
and classification of alternatives not only at the global level, but 
also at any intermediate level of the hierarchy.

The final class assignment for each alternative is obtained by 
comparing its overall performance with respect to predefined class 
profiles or decision rules, according to the selected hierarchical sorting 
procedure. The non-compensatory nature of the model ensures that 
insufficient performance on critical criteria can prevent assignment to 
higher classes, even if other criteria exhibit favorable values.

3.2. Criteria Hierarchy and Construction of Indicators
As introduced in the previous subsection, the evaluation 
of electricity generation technologies is conducted using a 
hierarchically structured family of criteria, denoted by,

  � � �{ } ,g I E0

Where g0 represents the overall evaluation objective, I  is the set 
of intermediate (non-elementary) criteria, and E  is the set of 
elementary criteria. The hierarchy is defined as a tree, where each 
non-elementary criterion aggregates the information provided by 
its direct descendants exploiting the preferences of a decision 
maker.

The objective at the root of the hierarchy, g0, is to assess the overall 
sustainability performance of electricity generation technologies; 
specifically, assign each technology to an ordinal class 
(e.g., {Very low, Low, Medium, High, Very high} sustainability/
convenience). This objective is decomposed into four intermediate 
criteria reflecting dimensions that are standard in energy planning 
and technology assessment following recommendations of the 
literature (Lovering et al., 2022; Mardani et al., 2021; Markandya 
and Wilkinson, 2007; Our World in Data, 2022; 2025; Sovacool 
et al., 2016; Wachs and Engel, 2021; Wulf et al., 2023):

g0→{g0, g0, g0, g0}

where:
• g1 represents economic performance,
• g2 represents technical performance,
• g3 represents system relevance, and
• g4 represents environmental and health impacts.

This decomposition is consistent with the standard sustainability 
assessment of energy technologies, which emphasizes economic 
feasibility, technical operability, system-level deployment, 
and environmental and social externalities as distinct but 
complementary dimensions (Lovering et al., 2022; Mardani et al., 
2021; Markandya and Wilkinson, 2007; Wulf et al., 2025).

3.2.1. Economic performance
The economic performance criterion g1 captures the cost 
characteristics of electricity generation technologies and is 
decomposed as:

g1→{g11,g12,g13,g14}

where:
• g11 is the capital cost (USD/kW) – investment required to build

a new electricity generation facility, normalized by installed
capacity,

• g12 is the fixed operation and maintenance (O&M) cost (USD/
kW·year) – recurring expenditures that are independent of
electricity output, such as staffing, routine maintenance,
insurance, and administrative expenses,

• g13 is the variable O&M cost (USD/MWh) – expenses that
depend on electricity production, excluding fuel costs, such
as consumables, waste handling, and variable maintenance,
and

• g14 is the levelized cost of electricity (USD/MWh) – average
cost of producing one unit of electricity over the lifetime of a
generation asset, accounting for capital costs, operating costs, 
fuel costs, and financing assumptions.
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These indicators are widely used in comparative assessments of 
generation technologies and provide a coherent representation 
of investment and operating costs under consistent modeling 
assumptions (Mirletz et al., 2024). They can be directly 
obtained from the Annual Technology Baseline published 
by the National Renewable Energy Laboratory and from the 
cost and performance studies of the U.S. Energy Information 
Administration.

3.2.2. Technical performance
The technical performance criterion g2 reflects the operational 
characteristics of generation technologies and is defined as:

g2→{g21},

where g21 denotes the capacity factor. This indicator measures the 
utilization rate of installed capacity and can be directly extracted 
from the same source. Capacity factor is a fundamental indicator 
of technical performance and is commonly used to characterize 
the operational reliability and intermittency of electricity 
generation technologies (U.S. Energy Information Administration 
(EIA), 2024).

3.2.3. System relevance
The system relevance criterion g3 captures the actual role of each 
technology in the electricity system and is decomposed as:

g3→{g31,g32},

where:
• g31 is the existing installed capacity (MW) – total nominal

generating capacity of all operational units of a given
technology in the electricity system, and

• g32 is the net electricity generation (TWh) – total amount of
electricity produced by a technology over a given period, after 
accounting for plant-level consumption.

These criteria can be extracted from the U.S. Energy Information 
Administration’s Electric Power Annual, specifically regarding 
existing capacity and net generation. Unlike modeled cost 
indicators, these measures reflect observed deployment and 
operation, providing a system-level perspective on the relative 
importance of each technology in the current electricity mix (U.S. 
Energy Information Administration (EIA), 2024).

3.2.4. Environmental and health impacts
The environmental and health impacts criterion, g4, represents 
non-market externalities associated with electricity generation 
and is decomposed as:

g4→{g41,g42,g43},

where:
• g41 is the life-cycle land-use intensity (m²·year/MWh),
• g42 is the death rate from accidents and air pollution (deaths/

TWh), and
• g43 is the life-cycle greenhouse gas emission intensity

(gCO₂-eq/kWh).

All three criteria can be obtained directly from datasets published 
by Our World in Data, which synthesize peer-reviewed life-cycle 
assessment, epidemic, and emissions studies. Land-use intensity 
values can be derived from life-cycle assessments reported by 
UNECE and related studies, and are provided with minimum, 
median, and maximum estimates, making them suitable for 
interval-valued modeling (Lovering et al., 2022). Death rates 
aggregate accident-related and air-pollution-related mortality 
per unit of electricity generated, following established fuel-
cycle health impact analyses (Markandya and Wilkinson, 2007; 
Sovacool et al., 2016). Life-cycle greenhouse gas emissions are 
reported as CO₂-equivalent intensities and reflect full life-cycle 
impacts rather than operational emissions alone (IPCC, 2022).

3.3. Performance Evaluation of Alternatives
Let

A = {a1,a2,…,am}= {coal, natural gas, nuclear, hyderpower, 
wind, and solar photovoltaic}

denote the set of considered alternatives corresponding each to an 
electricity generation technology. The performance of each 
alternative is evaluated on the set of elementary criteria E  defined 
in Subsection 3.2 and shown in Table 1. As stated before, for each 
elementary criterion g E∈  and each alternative a ∈ A, the 
performance evaluation is denoted by g(a). Depending on the 
nature of the available data, evaluations take the form of either 
point values or intervals. The collection of all evaluations defines 
the performance matrix:

G g a a A g E
� � � � �

( )
, 

For the economic criteria g11,g12,g13,g14 and the technical criterion 
g21, each evaluation g(a) is represented by a single numerical 
value. For Table 1, these values correspond to technology-level 
reference assumptions under a fixed scenario and reference 
year (moderate cost case and 2030). Capital cost values 
(e.g., g11(Coal) = 3905.6 USD/kw) represent the overnight 
investment cost of a new plant, normalized by installed capacity. 
For each technology, the reference configuration defined by the 
data provider is used (e.g., new coal plant with average capacity 
factor, combined-cycle natural gas plant, large-scale nuclear 
reactor). No aggregation across criteria is performed at this 
stage, and no normalization or scaling is applied. Fixed costs are 
expressed per unit of installed capacity and capture expenditures 

Table 1: Description of the criteria considered to evaluate 
the technologies
Criterion Meaning Preference Data type
g11 Capital cost Minimize Real
g12 Fixed O&M Minimize Real
g13 Variable O&M Minimize Real
g14 LCOE Minimize Real
g21 Capacity factor Maximize Real
g31 Installed capacity Maximize Real
g32 Net generation Maximize Real
g41 Deaths/TWh Minimize Interval
g42 Land‑use intensity Minimize Real
g43 Life‑cycle GHG Minimize Real
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independent of output, while variable costs are expressed per 
unit of electricity generated and reflect production-dependent 
expenses. These values are taken directly from the same reference 
configurations used for capital costs.

When a criterion value is not reported for a given technology 
under consistent assumptions, the corresponding entry in the 
performance matrix is left undefined. Such cases are explicitly 
retained and handled at the decision-model level rather than 
through imputation.

System relevance criteria, g31 and g32, capture the observed 
contribution of each technology to the electricity system. 
These values are obtained from the U.S. Energy Information 
Administration’s Electric Power Annual, specifically regarding 
existing capacity and net generation. Unlike modeled cost 
indicators, these evaluations reflect historical deployment and 
operation, providing a complementary system-level perspective. 
Both criteria are expressed as absolute quantities and reflect actual 
deployment and operation. They are treated as benefit-type criteria, 
as higher values indicate greater system presence.

Environmental and health-related criteria are evaluated using 
normalized indicators expressed per unit of electricity generated 
according to the datasets provided by Our World in Data (Ritchie, 
2020; 2022). For criteria g42 (death rate) and g43 (life-cycle 
greenhouse gas emissions), evaluations are represented as point 
values:

g a g a42 43� �� �� � , ( ) .

For the land-use intensity criterion g41, evaluations are represented 
as intervals:

g a a g ag41 41 41( ) ( ), ( ) ,� �� ��

where the bounds correspond to the minimum and maximum 
values reported across life-cycle assessments. Interval-valued 
representation is used to preserve documented variability and to 
avoid selecting arbitrary representative values.

Each elementary criterion is associated with a well-defined 
preference direction. Cost-related, environmental, and health 
criteria are formulated as criteria to be minimized, whereas system 
relevance criteria are formulated as criteria to be maximized.

The performance matrix G provides the complete quantitative 
description of alternatives required to apply the hierarchical multi-
criteria sorting model and is shown in Table 2.

3.4. Hierarchical Multi-criteria Sorting Procedure
As reported in Section 2, the ELECTRE family is the most 
prominent method using the so-called outranking approach, 
one of the leading approaches in the literature about decision-
making. While traditional ELECTRE methods are effective in 
many scenarios, they have limitations when handling uncertain or 
imprecise data, which are common in real-world decision-making. 
Furthermore, many decision problems are highly complex, and to 
evaluate an alternative against a given criterion, it is necessary to 
also evaluate it against sub-criteria.

This is where the so-called interval-based hierarchical outranking 
approach comes into play (Fernández et al., 2022b). Below, 
we provide a brief explanation of this method. For the sake of 
consistency, we will use here the notation presented in (Fernández 
et al., 2022b).

• Let A be the set of alternatives (potential actions).
• Let Ig be the set of indices of all criteria in the hierarchy.
• Let χ = {g0, g1,…, gcard(Ig)} be the set of all criteria in the

hierarchy. Without loss of generality, we assume that
preference increases as a function of the values of the criteria.

• Let EL be the set of indices of all elementary criteria.
• Let Nh the number of immediate subcriteria of a non-

elementary criterion gh.
• Let Gh = {gh1,…, ghNh} be the set of immediate subcriteria of a 

non-elementary criterion gh.
• Let IGh the set of indices of all criteria in Gh.
• Let EL(h) be the set of indices of all elementary criteria that

influence a non-elementary criterion gh.
• Let D(h) be the set of indices of all criteria that influence a

non-elementary criterion gh of a lower hierarchical level; when
j ∈ D(h), then gj It is said to be a descendant of gh.

• Let ELp, a subset of EL, be the set of indices of all criteria that
are pseudo-criteria, that is, the subset of criteria where the
performance of the alternatives is not measured using interval 
numbers.

• Let ELI, a subset of EL, be the set of indices of all criteria that
are interval numbers.

(Fernández et al., 2022b) recommend using a partial overcoming 
relationship, denoted as Sj ⊆ A×A, associated with each criterion 
gj ∈ EL. This serves to indicate that “a is at least as good as b 
from the perspective of gj ”; a, b ∈ (A×A), together with a degree 
of credibility, δj(a, b).

The calculation of δj (a, b) depends on whether gj is a pseudo-
criterion or an interval number. When gj is an interval number, a 
possibility function is required to determine if a criteria score is 

Table 2: Performance matrix
Technology g11 g12 g13 g14 g15 g31 g32 g41 g42 g43
1. Coal 3905.6 83.3 8.99 — — 197 828 [12, 21] 24.6 970
2. Natural Gas 1403.3 31.8 2.04 — — 509 1 671 [0.9, 1.3] 2.8 440
3. Nuclear 7616.4 175.0 2.80 84.4 0.93 96 772 [0.2, 0.5] 1.3 24
4. Hydropower 8937.4 101.3 0.00 107.5 0.52 80 250 [14, 33] 0.04 11
5. Wind 1483.7 29.9 0.00 32.7 0.43 146 434 [0.4, 8.4] 0.03 6
6. Solar PV 1193.5 18.0 0.00 36.9 0.27 110 205 [12.6, 19] 0.02 53
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at least as good as another. It is possible to define the possibility 
function as follows:
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Therefore, when gj ∈ ELI, δj(a, b) can be calculated as follows:

δj(a, b) = P (gj(a) ≥ gj(b));

And when gj ∈ ELP:
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where pj and qj represent the preference and indifference thresholds 
for the criterion gj. The former establishes a range in which the 
policymaker has a strict preference for one of the alternatives; the 
latter establishes a range in which the policymaker is indifferent 
given that the performance of the alternatives is sufficiently similar.

Now, the degree of credibility of aShb when h ∉ EL, denoted by 
σh (a,b), can be calculated recursively by summing all the σj (a, b) 
values to gj ∈ Gh. Note that, when gj ∈ ELN, then:

σj (a, b) = δj(a, b).� (1)

This aggregation requires a criterion weight (considered as a 
relative importance coefficient) that must be defined for each gj 
∈ Gh; let’s denote this weight as wjh. Other parameters associated 
with gj ∈ Gh can also be defined as a veto threshold, vjh (rejecting 
any credibility of aShb if gj (b) exceeds gj(a) by an amount greater 
than vjh). These parameters allow calculating a concordance index 
γ related to Sh, ch(a,b,γ). This value represents the support of the
coalition of criteria according to aShb, where γ is the highest
credibility value of these criteria that support the claim. The
degree of credibility of the claim “the coalition of agreement γ
considered is sufficiently strong” is then calculated as P(ch(a,b,γ)
≥ λh), where λh is a threshold established by the policymaker to
determine whether a solid majority is constituted. The reader is
advised to consult (Fernández et al., 2022b) for more details on
the calculation of ch(a,b,γ), as well as some restrictions that the
aforementioned parameters must meet.

Using this notation, we can perform the ordinal classification 
of electricity generation technologies by using the following 

procedure (Fernández et al., 2022b). The HI-INTERCLASS-nC 
method is a novel approach that uses an interval-based hierarchical 
outranking model to assign alternatives to preferentially ordered 
classes. This methodology allows assignments to be made at 
the level of any non-elementary criterion gh. C

h is defined as a 
finite set of classes Ch = {C1,…, Cki,…, CM}h, M ≥ 2, ordered 
with increasing preference with respect to gh. The subset 
Rk = {rk,j, j = 1,…, card(Rk)}​ represents the reference alternatives 
that characterize Ck ​, with k = 1,…, M. The total set of reference 
alternatives is {r0, R1,…, RM, rM +1}, where 𝑟0 and rM+1 are the anti-
ideal and ideal alternatives, respectively.

The credibility indices between an alternative a and class Ck are 
defined as:

h k j card R h k ja R max a r
k

� �� � � � �� �
� �

, ,
, , ( )

,
1

h k j card R h k jR a max r a
k

, ,
, , ( )

,� �� � � � �� �
� �1

Where h(a,rk,j) is calculated through equation (1).

For a given value β > 0.5, the hierarchical categorical classification 
relationships are defined as follows:
a) aSh(β)Rk ⇔ σh({a}, Rk) ≥ β;
b) RkSh(β)a Symbol σh(Rk,{a}) ≥ β.

The selection function is defined as: ih({a}, Rk) = min{σh ({a }, 
R k), σh (R k, {a })}.

The method uses two joint rules to suggest assignments: the 
descending rule and the ascending rule, which must be used 
together. Each of these rules selects only one class for the possible 
assignment of an alternative.

Descending assignment rule: First, establish β and λ. Then, define 
the class set Ch and the representative subsets of the alternatives 
{r0, R1,…, RM, rM +1}.
• Compare a with Rk for k = M,…, 0, up to the first value, k,

such that aSh(β)Rk.
• For k = M, select CM as a possible category to assign a.
• For 0 < k < M, if ih({a}, Rk) ≥ ih({a}, Rk +1), then select Ck as

a possible category to assign a; otherwise select Ck +1.
• For k = 0, select C1 as a possible category to assign a.

Ascending assignment rule: First, establish β and λ. Then, define 
the class set Ch and the representative subsets of the alternatives 
{r0, R1,…, RM, rM +1}.
• Compare a with Rk for k = 1,…, M +1, up to the first value,

k, such that RkSh(β)a.
• For k = 1, select C1 as a possible category to assign a.
• For 1 < k < M +1, if ih({a}, Rk) ≥ ih({a}, Rk −1), then select Ck

as a possible category to assign a; otherwise select Ck -1.
• For k = M + 1, select CM as a possible category to assign a.

3.5. Preference Modeling
The assignment of alternatives to ordered classes requires the 
specification of preference information reflecting the decision 
maker’s priorities and tolerance to imperfect knowledge. In this 



Solares, et al.: Supporting Sustainable Energy Finance through Hierarchical Multi-criteria Sorting of Electricity Generation Technologies

International Journal of Energy Economics and Policy | Vol 16 • Issue 2 • 2026986

work, preference modeling is performed in a manner consistent 
with the hierarchical structure of criteria and with the use of 
interval-valued evaluations according to the aggregation rules 
described in subsection 3.4.

3.5.1. Criteria weights
The relative importance of criteria is modeled using weights. For 
each non-elementary criterion g I∈ , a vector of local weights 
is defined over its direct descendants. Let ch(g) denote the set of 
children of criterion g.

To account for imprecision in preference elicitation, weights are 
allowed to take the form of intervals:

w w wh h h∈[ , ]

where the bounds represent admissible ranges reflecting 
uncertainty or variability in the decision maker’s judgments. 
Interval-valued weights are specified independently at each node 
of the hierarchy and must satisfy:

0 � � � � � �w w h ch gh h ,

h ch g
hw

�
� �
( )

1

h ch g
hw

�
� �
( )

1  Several elicitation strategies can be used to elicit the 

values of these parameters, depending on the availability, 
consistency, and cognitive effort expected from the decision maker 
(Singh and Pant, 2021; Solares et al., 2022; Solares et al., 2025). 
The first group of methods is based on direct assignment; the 
decision maker assigns weights directly to each criterion 
(Kizielewicz et al., 2024). A second group includes ratio-based 
methods, where the decision maker compares criteria in terms 
of relative importance (e.g., Figueira and Roy, 2002). This can 
be done by stating how many times one criterion is more 
important than another, or by allocating a fixed number of points 
among criteria. Another possibility is indirect or learning-based 
approaches. In these methods, weights are inferred from example 
decisions, preference statements, or observed choices. The 
elicited weights, often expressed as feasible intervals, are those 
that best reproduce the decision maker’s observed behavior while 
respecting the hierarchical constraints (e.g., Fernández et al., 
2023; López et al., 2023; Navarro et al., 2023). All these 
elicitation modes can be combined across different levels of the 
hierarchy, allowing the decision maker to use simpler judgments 
at higher levels and more detailed assessments where greater 
discrimination is required.

Table 3 describes the weights used in this work; they aim to reflect 
plausible relative importance relations within the criteria hierarchy. 
All intervals were normalized within each node to maintain 
coherence in the hierarchical aggregation. For example, at the 
Economic performance node, the weights of capital cost, fixed and 
variable operation and maintenance, and LCOE were expressed 
as overlapping intervals reflecting their comparable relevance in 
cost-based assessments, with the latter retaining a slightly higher 

central importance. A similar principle was applied at the System 
relevance and Environmental and health impacts nodes, where 
intervals reflect the fact that several indicators contribute jointly 
and none can be assumed to dominate unequivocally.

At the root node, the four main dimensions were weighted using 
the same rule: their relative importance was derived from the 
aggregate discriminatory power of their elementary criteria, 
and then expressed as intervals to reflect uncertainty in cross-
dimensional trade-offs.

3.5.2. Preferential thresholds
To avoid overfitting and keep thresholds comparable across 
heterogeneous units, we define them as fixed fractions of each 
criterion’s observed range in the matrix; that is, thresholds were 
set as constant fractions of observed dispersion (5%/15%/40% of 
the range), which allows us to get scale-consistent discrimination 
without injecting artificial precision. The thresholds required to 
operationalize the method described in Subsection 3.4 are shown 
in Table 4. Note how for g41, being defined as an interval criterion, 
the thresholds are not required to be defined.

3.5.3. Class profiles and ordered categories
Given the nature of the problem, a three-category ordinal 
scale is appropriate. It allows discrimination without imposing 
excessive precision and is consistent with exploratory and 
policy-oriented analyses. The following ordered categories are 
proposed (Table 5):

Table 3: Criteria weights
Node Criterion Weight
Root node Economic performance [0.30, 0.45]

Technical performance [0.20, 0.35]
System relevance [0.15, 0.35]
Environmental and health impacts [0.25, 0.40]

Economic 
performance

Capital cost [0.20, 0.25]

Fixed O&M [0.25, 0.35]
Variable O&M [0.25, 0.45]
LCOE [0.10, 0.20]

Technical 
performance

Capacity factor [1.00, 1.00]

System relevance Installed capacity [0.35, 0.45]
Net generation [0.40, 0.60]

Environmental 
and health 
impacts

Land‑use intensity [0.20, 0.25]

Deaths/TWh [0.45, 0.50]
Life‑cycle GHG [0.30, 0.40]

Table 4: Preferential thresholds
Criterion Range basis q p v
g11 8937.4−1193.5=7743.9 387.2 1161.6 3097.6
g12 175.0−18.0=157.0 7.9 23.6 62.8
g13 8.99−0.00=8.99 0.45 1.35 3.60
g14 107.5−32.7=74.8 3.74 11.22 29.92
g21 0.93−0.27=0.66 0.03 0.10 0.26
g31 509−80=429 21.5 64.4 171.6
g32 1671−205=1466 73.3 219.9 586.4
g42 24.6−0.22=24.58 1.23 3.69 9.83
g43 970−6 = 964 48.2 144.6 385.6
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1. r₁ – Non-acceptable. Technologies that present poor overall
performance, typically driven by high costs, low system
relevance, or high environmental and health impacts.

2. r ₂ – Acceptable. Technologies that exhibit balanced
performance, with moderate costs and impacts, but without
clear dominance across most criteria.

3. r₃ – Highly acceptable. Technologies with strong overall
performance, characterized by low environmental and health
impacts, good system relevance, and competitive economic
or technical indicators.

The obvious ordering of these classes is:

C C C1 2 3 

For each category, a reference profile (synthetic alternative) 
is defined. Each profile is constructed using values that are 
representative of the empirical ranges observed in the performance 
matrix. For cost and impact criteria, lower values are preferred; 
for capacity factor, installed capacity, and net generation, higher 
values are preferred.

4. RESULTS

This section presents the results of the hierarchical multi-criteria 
sorting procedure applied to the set of electricity generation 
technologies. Alternatives are evaluated and assigned to ordered 
classes by considering their performances across all non-
elementary criteria of the hierarchy, allowing the analysis to be 
conducted at different levels of aggregation. This hierarchical 
perspective enables the identification of strengths and weaknesses 
of each technology within individual dimensions, as well as their 
overall classification when all criteria are jointly considered. The 
results are reported for each aggregation level, highlighting the 
impact of economic, technical, system-related, and environmental 
and health dimensions on the final assignments.

4.1. Overall Classification Results
This subsection reports the overall classification results obtained 
at the overall criterion g0, where all non-elementary criteria 
of the hierarchy are jointly considered. Unlike other sorting 
approaches, the proposed approach may assign an alternative to 
a range of adjacent classes, reflecting the presence of uncertainty, 
imprecision, or borderline performance with respect to class 
profiles.

Recall that  = { , , }C C C0 1 2  denote the ordered set of classes, 
corresponding to Non-acceptable, Acceptable, and Highly 
acceptable, respectively, as described in Subsection 3.5.3. For 
each alternative a ∈ A, the result of the sorting procedure is an 
assignment interval [Ck,Cl], indicating that the alternative can be 
assigned to any class between Ck and Cl under admissible 
preference parameter values. Range-based assignments provide 
insight into the robustness of the classification results.

Coal is assigned to the range Non-acceptable–Acceptable 
([C0,C1]). This borderline classification is primarily driven by 
coal’s very poor performance on environmental and health 
criteria, particularly deaths per TWh and life-cycle greenhouse 
gas emissions, which clearly exceed the thresholds associated 
with higher acceptability classes. Although coal exhibits strong 
system relevance, with high installed capacity and net generation, 
and satisfactory technical characteristics, these strengths are 
insufficient to robustly compensate for its environmental drawbacks 
under most admissible weight configurations. Consequently, coal 
cannot be stably assigned beyond the acceptable class and remains 
sensitive to the relative importance given to environmental and 
health impacts.

Natural gas is robustly assigned to the Acceptable class ([C1,C1]). 
Its classification is driven by a balanced performance profile: 
natural gas shows relatively favorable economic indicators and 
strong system relevance, combined with moderate environmental 
impacts. While its greenhouse gas emissions and health impacts 
are significantly lower than those of coal, they remain well above 
the thresholds required for the Highly acceptable class. At the same 
time, its performance is consistently superior to the non-acceptable 
profiles, resulting in a stable intermediate classification.

Nuclear is robustly assigned to the Highly acceptable class 
([C2,C2]). This result is mainly driven by nuclear energy’s 
outstanding performance on environmental and health criteria, 
particularly very low greenhouse gas emissions and low death 
rates per unit of electricity generated. In addition, its high capacity 
factor provides strong technical support for the assignment. 
Although nuclear exhibits high capital and fixed operating 
costs, the hierarchical aggregation and the weight ranges allow 
these economic disadvantages to be outweighed by its favorable 
environmental and technical characteristics, leading to a stable 
assignment to the highest class.

Hydropower is assigned to the Acceptable class ([C1,C1]). Its 
classification is explained by mixed performance across criteria. 
Hydropower performs well on environmental and health criteria, 
with low emissions and death rates, but shows relatively high 
capital costs and significant land-use intensity. Its moderate 
system relevance and capacity factor further position it between 
the lower and upper class profiles. As a result, hydropower does 
not consistently meet the thresholds required for the Highly 
acceptable class, but it clearly outperforms the non-acceptable 
profiles, yielding a robust intermediate assignment.

Wind is robustly assigned to the Highly acceptable class (([C2,C2]). 
This assignment is primarily driven by its very favorable 

Table 5: Class profiles and ordered categories
Criterion r1 

(Non‑acceptable)
r2 

(Acceptable)
r3 

(Highly acceptable)
g11 7 500 2 500 1 200
g12 150 40 20
g13 6.0 2.0 0.5
g14 95 40 30
g21 0.30 0.50 0.75
g31 100 150 400
g32 300 600 1 200
g42 [10,20] [1,5] [0.2,1]
g43 15 5 1
g11 800 200 50
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environmental and health performance, including extremely low 
death rates and greenhouse gas emissions, as well as low variable 
operating costs. Although wind exhibits lower capacity factors and 
moderate system relevance compared to dispatchable technologies, 
these limitations are insufficient to offset its strong performance 
on heavily weighted environmental criteria. Consequently, wind 
remains in the highest class across all admissible preference 
configurations.

Solar photovoltaic technology is also robustly assigned to the 
Highly acceptable class (([C2,C2]). Similar to wind, this result is 
driven by very low health impacts and low life-cycle greenhouse 
gas emissions, combined with low operating costs. While solar 
PV displays relatively low capacity factors and non-negligible 
land-use intensity, these aspects do not prevent it from satisfying 
the profiles associated with the highest acceptability class when 
the full set of criteria is considered.

4.2. Results at the Economic Performance Level
This subsection analyzes the classification results obtained 
when alternatives are evaluated exclusively under the economic 
performance criterion g1, which aggregates capital cost, fixed 
operation and maintenance cost, variable operation and maintenance 
cost, and levelized cost of electricity. At this level, assignments 
reflect purely cost-related considerations, independently of 
technical, system-level, or environmental and health impacts.

Coal is assigned to the range Non-acceptable–Acceptable. 
This classification is primarily driven by its high capital cost 
and relatively high variable operating costs, which exceed the 
thresholds associated with the higher acceptability class. Although 
coal does not consistently fall below all non-acceptable economic 
profiles, its cost structure prevents a robust classification beyond 
the acceptable class under most admissible weight combinations. 
Natural gas is robustly classified as Acceptable. This result is 
mainly explained by its relatively low capital cost and moderate 
fixed and variable operating costs. These characteristics allow 
natural gas to comfortably satisfy the acceptable economic profiles, 
while its cost performance remains insufficient to meet the most 
demanding thresholds associated with the highly acceptable class.

Nuclear is classified within the Non-acceptable–Acceptable 
range at the economic level. This assignment is driven by very 
high capital and fixed operating costs, which strongly penalize 
nuclear energy under purely economic considerations. Although 
its variable operating costs and levelized cost of electricity are 
comparatively favorable, these advantages are not sufficient 
to compensate for the large upfront investment requirements, 
resulting in a borderline economic classification. Hydropower 
is also assigned to the Non-acceptable–Acceptable range. 
This outcome is largely explained by high capital costs and 
non-negligible fixed operating costs, which limit its economic 
attractiveness despite low variable operating costs. As a result, 
hydropower does not robustly satisfy the economic thresholds 
required for higher acceptability.

Wind is robustly assigned to the Highly acceptable class. 
This classification is driven by its low capital cost, very low 

fixed and variable operating costs, and competitive levelized 
cost of electricity. Even when conservative economic weight 
configurations are considered, wind consistently meets or exceeds 
the profiles associated with the highest economic acceptability 
class. Solar photovoltaic technology is also robustly classified as 
Highly acceptable at the economic level. This result is explained 
by its low capital cost, minimal operating costs, and favorable 
levelized cost of electricity. Although its capacity factor is low, 
this aspect does not influence the economic-level evaluation and 
therefore does not affect its classification under g1.

4.3. Results at the Technical Performance Level
This subsection presents the classification results obtained when 
alternatives are evaluated under the technical performance criterion 
g2, which is defined solely by the capacity factor. As g2 consists 
of a single elementary criterion, no aggregation is required at this 
level, and the assignments directly reflect differences in average 
utilization rates across technologies.

Nuclear is robustly assigned to the Highly acceptable class due to its 
very high capacity factor, which consistently exceeds the threshold 
associated with the highest acceptability profile. This result reflects 
nuclear energy’s ability to operate at near-continuous output over 
extended periods. Coal, natural gas and hydropower are assigned 
to the Acceptable class. Their capacity factors are sufficient to 
meet the acceptable technical performance threshold but do not 
consistently reach the level required for classification as highly 
acceptable. Finally, wind and solar photovoltaic technologies 
are assigned to the Non-acceptable class, since their relatively 
low capacity factors, inherent to variable renewable energy 
sources, prevent them from meeting the thresholds associated 
with acceptable or highly acceptable technical performance when 
capacity factor is considered in isolation.

4.4. Results at the Environmental and Health Impact 
Level
Here, we present the classification results obtained when 
alternatives are evaluated exclusively under the environmental 
and health impact criterion g4, which aggregates land-use intensity, 
death rates associated with electricity generation, and life-cycle 
greenhouse gas emissions. At this level, assignments reflect the 
non-market externalities of electricity generation technologies, 
independently of economic costs, technical performance, or 
system relevance.

For this scenario, coal is robustly assigned to the Non-acceptable 
class. This result is driven primarily by its very high life-cycle 
greenhouse gas emissions and its exceptionally high death rate 
per unit of electricity generated. Even under permissive weight 
configurations, these impacts consistently exceed the thresholds 
associated with acceptable performance, leading to a stable 
classification in the lowest class.

Natural gas is assigned to the Acceptable class. Its classification 
reflects a substantial improvement over coal in terms of greenhouse 
gas emissions and health impacts, yet these indicators remain 
significantly higher than those of low-carbon technologies. 
Although natural gas exhibits relatively low land-use intensity, 
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this advantage is insufficient to justify classification as highly 
acceptable when health and climate impacts are considered. 
Hydropower is also assigned to the Acceptable class. While 
hydropower performs well in terms of greenhouse gas emissions 
and death rates, its land-use intensity is relatively high and exhibits 
substantial variability. This combination results in an intermediate 
classification, as hydropower does not consistently satisfy the most 
demanding environmental and health profiles across all admissible 
parameter values.

Nuclear is robustly assigned to the Highly acceptable class. This 
classification is driven by very low greenhouse gas emissions 
and one of the lowest reported death rates per unit of electricity 
generated. In addition, nuclear energy exhibits extremely low land-
use intensity. These characteristics allow nuclear technology to 
satisfy the highest environmental and health thresholds under all 
admissible weight configurations. Wind is also classified as Highly 
acceptable. Its assignment is explained by extremely low death 
rates and very low life-cycle greenhouse gas emissions, combined 
with low land-use intensity when considering direct impacts. These 
favorable characteristics dominate any variability in land-use 
estimates and lead to a stable classification in the highest class. 
Finally, solar photovoltaic technology is also robustly assigned 
to the Highly acceptable class. Despite exhibiting higher land-
use intensity than wind and nuclear, solar PV maintains very 
low death rates and relatively low greenhouse gas emissions. 
These advantages are sufficient to consistently satisfy the profiles 
associated with the highest environmental and health acceptability 
class.

5. CONCLUSION

This paper proposed a hierarchical multi-criteria sorting 
framework to support the evaluation of electricity generation 
technologies under multiple, potentially conflicting dimensions. 
Rather than producing a single ranking, the approach assigns 
technologies to ordered acceptability classes, providing a 
decision-oriented perspective that is well suited to policy 
analysis, investment screening, and strategic planning in the 
energy sector. The empirical application to major electricity 
generation technologies in the United States demonstrates the 
ability of the proposed approach to generate interpretable and 
robust classifications. Low-carbon technologies, particularly 
nuclear, wind, and solar photovoltaic, are consistently classified 
in the highest acceptability class when economic, technical, 
system-level, and environmental and health criteria are jointly 
considered. Fossil-based technologies, especially coal, exhibit 
less favorable and less robust classifications, reflecting the 
strong influence of environmental and health impacts on overall 
acceptability. Technologies such as natural gas and hydropower 
display intermediate classifications, highlighting the presence of 
trade-offs and sensitivity to preference structures.

A key contribution of the study is the explicit treatment of 
uncertainty. Range-based class assignments reveal when 
classifications are robust and when they depend on assumptions 
regarding criteria importance or performance variability. This 
feature avoids false precision and provides decision makers 

with more informative insights than conventional single-score 
or deterministic ranking approaches. Moreover, the hierarchical 
structure allows results to be analyzed at different levels of 
aggregation, supporting nuanced interpretation and facilitating 
communication with stakeholders.

The proposed framework is subject to several limitations. The 
analysis is conducted at the technology level and does not capture 
heterogeneity across individual plants or regional contexts. In 
addition, the set of criteria is constrained by data availability and 
does not explicitly include factors such as grid integration costs, 
market dynamics, or policy instruments. Future research could 
extend the framework to incorporate plant-level data, dynamic 
scenarios, or additional financial and regulatory indicators, as well 
as explore participatory preference elicitation processes involving 
multiple stakeholders (Diaz et al., 2022; Solares et al., 2022).

The study illustrates how hierarchical multi-criteria sorting can 
serve as a transparent and flexible decision-support tool for 
evaluating electricity generation technologies in complex and 
uncertain environments. By combining rigorous decision analysis 
with publicly available data, the proposed approach offers a 
practical contribution to the assessment of energy technologies 
and supports more informed and responsible decision-making in 
the context of energy transition.

Several directions for future research emerge from this study. 
First, the proposed framework could be extended to a plant-
level or regional analysis, allowing heterogeneity in technology 
performance, environmental impacts, and system integration 
conditions to be explicitly modeled. Second, additional criteria 
relevant to financial decision-making, such as investment risk, 
revenue volatility, or exposure to policy and market uncertainty. 
Third, the framework could be adapted to dynamic and scenario-
based settings, enabling the evaluation of technologies under 
alternative demand, policy, or decarbonization pathways. Finally, 
future work could explore participatory preference elicitation 
involving multiple stakeholders, such as policymakers, investors, 
and system operators, to assess how differing perspectives 
influence classification outcomes.

6. ACKNOWLEDGEMENTS

This work was supported by the Vice President of Research of the 
Tecnologico de Monterrey.

REFERENCES

Amiri, A.A., Wahid, M.N., Al-Buraiki, A.S., Al-Sharafi, A. (2024), A 
strategic multi-criteria decision-making framework for renewable 
energy source selection in Saudi Arabia using AHP-TOPSIS. 
Renewable Energy, 236, 121523.

Barros, M.V., Salvador, R., Piekarski, C.M., De Francisco, A.C., 
Freire,  F.M.C.S. (2020), Life cycle assessment of electricity 
generation: A  review of the characteristics of existing literature. 
The International Journal of Life Cycle Assessment, 25(1), 36-54.

Belahcène, K., Mousseau, V., Ouerdane, W., Pirlot, M., Sobrie, O. (2024), 
A guided tour of multiple criteria sorting models and methods. Annals 
of Operations Research, 343(2), 785-845.



Solares, et al.: Supporting Sustainable Energy Finance through Hierarchical Multi-criteria Sorting of Electricity Generation Technologies

International Journal of Energy Economics and Policy | Vol 16 • Issue 2 • 2026990

Corrente, S., Greco, S., Słowiński, R. (2016), Multiple criteria hierarchy 
process for ELECTRE Tri methods. European Journal of Operational 
Research, 252(1), 191-203.

Dell’Anna, F. (2023), An ELECTRE TRI B-based decision framework to 
support the energy project manager in dealing with retrofit processes 
at district scale. Sustainability, 15(2), 1250.

Diaz, R., Solares, E., De-León-Gómez, V., Salas, F.G. (2022), Stock 
portfolio management in the presence of downtrends using 
computational intelligence. Applied Sciences, 12(8), 4067.

Fernández, E., Figueira, J.R., Navarro, J. (2019), An interval extension 
of the outranking approach and its application to multiple-criteria 
ordinal classification. Omega, 84, 189-198.

Fernández, E., Figueira, J.R., Navarro, J. (2020), Interval-based extensions 
of two outranking methods for multi-criteria ordinal classification. 
Omega, 95, 102065.

Fernández, E., Navarro, J., Solares, E. (2022a), A hierarchical interval 
outranking approach with interacting criteria. European Journal of 
Operational Research, 298(1), 293-307.

Fernández, E., Navarro, J., Solares, E. (2022b), A hierarchical interval 
outranking approach with interacting criteria. European Journal of 
Operational Research, 298(1), 293-307.

Fernández, E., Navarro, J., Solares, E., Coello, C.A.C., Diaz, R., Flores, A. 
(2023), Inferring preferences for multi-criteria ordinal classification 
methods using evolutionary algorithms. IEEE Access, 11, 3044-3061.

Fernandez, E., Navarro, J., Solares, E., Coello, C.C. (2020), Using 
evolutionary computation to infer the decision maker’s preference 
model in presence of imperfect knowledge: A case study in portfolio 
optimization. Swarm and Evolutionary Computation, 54, 100648.

Figueira, J., Mousseau, V., Roy, B. (2005), ELECTRE methods. 
In: Figueira, S.G., Ehrgott, M., editors. International Series in 
Operations Research and Management Science. Vol. 78. Springer 
Science+Business Media, Inc. p133-162.

Figueira, J., Roy, B. (2002), Determining the weights of criteria in the 
ELECTRE type methods with a revised Simos’ procedure. European 
Journal of Operational Research, 139(2), 317-326.

Filemon, A., Tembo, A., Cabenda, M., Malaca, S., Barros, A.A.C. 
(2025), Life cycle assessment of electricity generation systems in 
Angola. International Journal of Energy Economics and Policy, 
15(5), 685-694.

Hemmati, M., Bayati, N., Ebel, T. (2024), Integrated life cycle 
sustainability assessment with future energy mix: A  review of 
methodologies for evaluating the sustainability of multiple power 
generation technologies development. Renewable Energy Focus, 
49, 100581.

Hernández-Torres, J.A., Sánchez-Lozano, D., Sánchez-Herrera, R., 
Vera, D., Torreglosa, J.P. (2025), Integrated multi-criteria decision-
making approach for power generation technology selection in 
sustainable energy systems. Renewable Energy, 243, 122481.

IPCC. (2022), AR6 Working Group III: Mitigation of Climate Change. 
Cambridge: University Press.

Kizielewicz, B., Tomczyk, T., Gandor, M., Sałabun, W. (2024), Subjective 
weight determination methods in multi-criteria decision-making: 
A systematic review. Procedia Computer Science, 246, 5396-5407.

López, J.C.L., Gamboa, S.F., Solares, E., Santiesteban, M.L., Diaz, R., 
Flores, A. (2023), Multicriteria decision model to support the 
evaluation of common jurisdiction violence in the capital cities of 
the states of Mexico. IEEE Access, 11, 38753-38769.

Lovering, J., Swain, M., Blomqvist, L., Hernandez, R.R. (2022), Land-use 
intensity of electricity production and tomorrow’s energy landscape. 
PLoS One, 17(7), e0270155.

Mardani, A., Saraji, M.K., Mishra, A.R., Rani, P. (2021), Multi-criteria 
decision analysis methods for energy sector’s sustainability 
assessment: A  review. Sustainable Energy Technologies and 
Assessments, 47, 101646.

Markandya, A., Wilkinson, P. (2007), Electricity generation and health. 
The Lancet, 370(9591), 979-990.

Mirletz, B., Vimmerstedt, L., Avery, G., Sekar, A., Stright, D.,… & 
Hoffmann, J. (2024). Annual Technology Baseline: The 2024 
Electricity Update. United States: National Laboratory of the Rockies.

Navarro, J., Fernández, E., Solares, E., Flores, A., Díaz, R. (2023), 
Learning the parameters of ELECTRE-based primal-dual sorting 
methods that use either characteristic or limiting profiles. Axioms, 
12(3), 294.

Our World in Data. (2022), How does the Land Use of Different Electricity 
Sources Compare? United Kingdom: Our World in Data.

Our World in Data. (2025), Death Rates per Unit of Electricity Production 
(Deaths Per TWh).United Kingdom: Our World in Data.

Ritchie, H. (2020), What are the Safest and Cleanest Sources of Energy? 
United Kingdom: Our World in Data.

Ritchie, H. (2022), How does the Land Use of Different Electricity 
Sources Compare? Available from: https://ourworldindata.org/land-
use-per-energy-source

Sahabuddin, M., Khan, I. (2021), Multi-criteria decision analysis methods 
for energy sector’s sustainability assessment: Robustness analysis 
through criteria weight change. Sustainable Energy Technologies 
and Assessments, 47, 101380.

Şengül, Ü., Eren, M., Shiraz, S.E., Gezder, V., Şengül, A.B. (2015), Fuzzy 
TOPSIS method for ranking renewable energy supply systems in 
Turkey. Renewable Energy, 75, 617-625.

Singh, M., Pant, M. (2021), A review of selected weighing methods in 
MCDM with a case study. International Journal of System Assurance 
Engineering and Management, 12(1), 126-144.

Solares, E., De-León-Gómez, V., Salas, F.G., Diaz, R. (2022), A 
comprehensive decision support system for stock investment 
decisions. Expert Systems with Applications, 210, 118485.

Solares, E., Fernández, E., Coello, C.A.C., Lozano, X.S., Moreno-Cepeda, R., 
Diaz, R. (2025), A comprehensive system to support decision making 
in highly complex project portfolio situations. IEEE Access, 13, 
38115-38132.

Solares, E., Salas, F.G., De-Leon-Gomez, V., Diaz, R. (2022), A 
comprehensive soft computing-based approach to portfolio 
management by discarding undesirable stocks. IEEE Access, 10, 
40467-40481.

Sovacool, B.K., Andersen, R., Sorensen, S., Sorensen, K., Tienda, V., 
Vainorius, A., Schirach, O.M., Bjørn-Thygesen, F. (2016), Balancing 
safety with sustainability: Assessing the risk of accidents for modern 
low-carbon energy systems. Journal of Cleaner Production, 112, 
3952-3965.

U.S. Energy Information Administration (EIA). (2024), Annual Energy 
Outlook 2024. U.S: Department of Energy. Available from: https://
www.eia.gov/outlooks/aeo

Undurraga, J.P., Rivera, M., Cossutta, P., Garcés, A., Ayala, M., 
Garcia Pérez, L., Wheeler, P. (2024), Electricity generation 
under the climate change situation in Latin America: trends and 
challenges. International Journal of Energy Economics and Policy, 
14(2), 535-545.

Wachs, E., Engel, B. (2021), Land use for United States power 
generation: A critical review of existing metrics with suggestions 
for going forward. Renewable and Sustainable Energy Reviews, 
143, 110911.

Wulf, C., Haase, M., Baumann, M., Zapp, P. (2023), Weighting factor 
elicitation for sustainability assessment of energy technologies. 
Sustainable Energy and Fuels, 7(3), 832-847.

Wulf, C., Mesa Estrada, L.S., Haase, M., Tippe, M., Wigger, H., Brand-
Daniels, U. (2025), MCDA for the sustainability assessment of 
energy technologies and systems: Identifying challenges and 
opportunities. Energy, Sustainability and Society, 15(1), 45.


