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ABSTRACT

Sustainable finance requires decision-support tools capable of integrating financial indicators with environmental and social risk factors in a transparent and data-
driven manner. This study introduces a hierarchical multi-criteria sorting approach for the evaluation of electricity generation technologies, aimed at informing
capital allocation and investment screening decisions. The framework relies exclusively on quantitative criteria obtained from public datasets and organizes
them into a structured hierarchy encompassing economic performance, technical reliability, system relevance, and environmental and health impacts. Interval-
valued evaluations and preference parameters are employed to represent uncertainty and heterogeneity in financial decision contexts. The resulting range-based
classifications distinguish technologies according to their overall acceptability from a sustainable finance perspective. Results for the U.S. electricity sector
highlight the ability of the approach to support responsible investment decisions under multiple, potentially conflicting financial and sustainability considerations.
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1. INTRODUCTION

Electricity generation technologies are the pillar of modern energy
systems and play a fundamental role in economic development,
environmental sustainability, and social well-being. Decisions
regarding the implementation and expansion of generation
technologies have long-term implications for energy costs,
greenhouse gas emissions, land use, public health, and energy
security. As energy systems suffer a rapid transition driven by
climate goals, technological innovation, and regulatory changes,
the need for a systematic and transparent assessment of electricity
generation options becomes critical.

The evaluation of electricity generation technologies is inherently
a multidimensional problem. Technologies differ in their

investment and operating costs, as well as in their emissions
profiles, local environmental impacts, land-use requirements, and
health and safety implications. These dimensions often involve
conflicting objectives: technologies with low capital costs may
have high emissions or health impacts, while technologies with
favorable environmental performance may face higher upfront
costs or spatial limitations. Therefore, relying only on single
indicators, such as the levelized cost of electricity (LCOE) or
carbon intensity, can provide a misleading basis for decision-
making. Thus, multi-criteria decision analysis (MCDA) has been
widely employed to support energy planning and technology
assessment. MCDA frameworks enable decision-makers to
integrate heterogeneous criteria into a structured evaluation
process, improving transparency and facilitating the comparison
of diverse technological options.
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Despite the widespread use of MCDA in energy planning and
technology assessment, the current literature presents several
methodological limitations. First, many studies rely on fully
compensatory aggregation (e.g., additive value models or weighted
sums) or hybrid ranking procedures, where good performance in
one dimension can offset poor or unacceptable performance in
others. This is often problematic in energy policy contexts, where
non-negotiable requirements exist (e.g., extremely bad emissions
or public health effects), and can reduce the interpretability of the
results for decision-makers (Sahabuddin and Khan, 2021).

Second, much of the literature is concentrated on assessing
technology to produce a ranking rather than an evaluation to produce
the sorting of the alternatives (i.e., assigning the technologies to
preferentially ordered classes). In practice, policymakers often
need to assign technologies to ordered categories such as “highly
sustainable,” “acceptable,” or “unacceptable,” which is more
aligned with selection, eligibility standards, and strategic planning
in decision aiding than with establishing a strict ranking. While
multi-criteria classification models have been consolidated and
analyzed within the decision-support community, their systematic
use in energy technology assessment remains rather limited
(Belahcéne et al., 2024).

Third, existing studies often employ flat lists of criteria, even
when the decision context naturally suggests a hierarchical
structure (e.g., environmental impact broken down into climate,
local pollutants, land use, and water impacts). Flat structures limit
the ability to audit decisions and understand the contribution of
each dimension at different levels of aggregation. Hierarchical
ranking methods exist, such as the Multi-Criteria Hierarchy
Process (MCHP) combined with ELECTRE TRI, but they
are not yet routinely adopted in energy assessment workflows
(Corrente et al., 2016). Fourth, uncertainty is often addressed
through informal sensitivity analyses, maintaining both precise
assessments and preference parameters. However, to a certain
extent, energy technology indicators often vary due to data
heterogeneity (e.g., life-cycle assessment ranges), contextual
variability, and incomplete articulation of stakeholder preferences.
Interval modeling provides a robust way to represent imperfect
knowledge and incomplete preference information in ordinal
ranking based on the outranking approach (Fernandez et al., 2019;
Fernandez et al., 2020). However, the integration of (i) hierarchical
criteria structures, (ii) interval-based criteria scores and preference
representation, together with (iii) the evaluation of electricity
generation technologies has remained unexplored.

Therefore, this work addresses these limitations by proposing
a multi-criteria hierarchical classification framework to assess
electricity generation technologies, designed to be transparent,
auditable, and robust to imperfect information. The proposed
approach offers three methodological advances. First, the
evaluation criteria are structured hierarchically, reflecting
the decomposition used in energy planning and enabling
consistent aggregation across levels (Corrente et al., 2016); the
proposal structures the assessment using a hierarchy of criteria
encompassing techno-economic performance, local environmental
impacts, climate-related emissions, land-use intensity, and health

and safety effects. Second, the framework allows evaluation at
any level of the hierarchy, generating not only an overall class
assignment but also intermediate-level assignments that provide
diagnostic information on whether a technology is primarily
disadvantaged by economic performance, local pollutants, climate
impacts, or land-use constraints. Third, both (a) the scores for the
alternative criteria and (b) the parameters representing decision-
makers’ preferences are modeled using intervals, allowing the
model to reflect data variability and preference imprecision
in a unified manner (Fernandez et al., 2019; Fernandez et al.,
2020; Fernandez et al., 2022a). A case study is used to show the
applicability of the proposal. All criteria used in this case study
are based on quantitative indicators obtained directly from public
databases, ensuring transparency, consistency, and reproducibility.

The remainder of the paper is organized as follows: Section 2
describes the related work; Section 3 details the criteria hierarchy,
datasets, and the proposed hierarchical interval sorting model;
Section 4 presents the empirical study for six major electricity
generation technologies in the United States; and Section 5
discusses policy implications, limitations, and future research
directions.

2. LITERATURE REVIEW

The evaluation of electricity generation technologies has
been widely addressed in the literature due to the economic,
environmental, and social implications associated with technology
choice (Filemon et al., 2025; Hemmati et al., 2024; Undurraga
et al., 2024). Conventional and renewable generation options
differ substantially in terms of investment and operating costs,
emissions, land use, and impacts on human health. As a result, this
problem has been commonly formulated as a multi-dimensional
decision task that requires the simultaneous consideration of
heterogeneous and often conflicting criteria (Barros et al., 2020;
Mardani et al., 2021).

Several review studies highlight the widespread adoption
of MCDA in the energy sector and emphasize its ability to
accommodate economic, environmental, technical, and social
indicators within a single analytical framework (Mardani et al.,
2021). For example, (Hernandez-Torres et al., 2025) proposed an
integrated MCDA framework using a hybrid combination of AHP
and a distance-based method to assess the sustainability of power
generation technologies, illustrating how trade-offs among cost,
emissions, and reliability criteria can be managed in technology
selection. Similarly, (Sengiil et al., 2015) applied fuzzy TOPSIS
to rank renewable and conventional generation options under
economic and environmental criteria, highlighting the importance
of simultaneously considering multiple performance indicators in
energy planning decisions. Amiri et al. (2024) used AHP-TOPSIS
in a case of grid capacity expansion, but acknowledged that
compensatory aggregation may mask serious trade-offs between
economic and environmental criteria.

These are examples of ranking-oriented methods. In practice,
however, energy planning and policy decisions often require
broader classifications, such as determining whether a technology
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is acceptable or unacceptable, or assigning technologies to priority
groups for deployment. Therefore, this type of methods can be
unrealistic in real-world energy decision contexts when energy
planners and policymakers aim to classify technologies into
ordered categories, such as “highly sustainable”, “acceptable”,
or “unsuitable”, to support regulatory thresholds, eligibility
rules, or strategic roadmaps. Multiple-criteria sorting models
provide a natural framework for assigning alternatives to
ordered classes based on their multi-dimensional performance

(Figueira et al., 2005).

Within the family of MCDA methods, outranking-based sorting
methods, such as ELECTRE TRI, are particularly attractive
because they support non-compensatory reasoning and allow
for the explicit treatment of discordance. Recent surveys have
consolidated the theoretical foundations of this type of sorting
methods and clarified their relevance for policy-oriented decision
problems (Bouyssou et al., 2024). Dell’ Anna (2023) demonstrated
the use of ELECTRE TRI-C to classify energy efficiency projects
into priority tiers, illustrating the practical value of sorting when
stakeholders require assignment to discrete categories rather
than rankings. Bouyssou et al. (2024) provided a comprehensive
overview of multiple-criteria sorting approaches, underscoring
their theoretical foundations and suitability for problems where
thresholds and veto effects are critical.

Despite the evident attractiveness of these methods, a lack of
clarity in the data aggregation process has been acknowledged
(Sahabuddin and Khan, 2021). In practice, the weighting process
can be carried out by several experts, but inconsistencies may
exist. Recent advances in sustainability assessment recognize
the greater sensitivity of the weighting process, which has been
acknowledged as an important step in the MCDA, enabling the
integration of different stakeholders (Wulf et al., 2023).

Interval modeling is a method for addressing imperfect
knowledge. Fernandez et al. (2019) introduced an interval-based
classification approach for multi-criteria ordinal classification
(sorting) problems, illustrating the incorporation of interval-
valued information into classification rules (Fernandez et al.,
2019). Building on this (Fernandez et al., 2020) introduced further
interval-based extensions for ordinal classification problems for
ELECTRE TRI-type outranking methods to address candidate
assignments in terms of imperfect knowledge.

In parallel, several authors have emphasized the importance of
hierarchical criteria structures in complex decision problems. Energy
technology assessment often involves natural decompositions
(e.g., environmental impact can be subdivided into climate
change, local air pollutants, land use, and water consumption).
Corrente et al. (2016) address this gap by introducing the Multiple
Criteria Hierarchy Process (MCHP) for ELECTRE TRI methods,
enabling sorting decisions with hierarchically structured criteria
and consistent weight propagation across levels. While this
contribution provides a rigorous methodological foundation,
its application in energy technology evaluation remains scarce,
particularly in studies aiming at policy-relevant classification.
Recently, hierarchical interval outranking classification models

have been proposed to represent both the hierarchy and more
complex preference models, such as interactions between criteria.
The work of (Fernandez et al., 2022a) presents a hierarchical,
interval-based ranking model with interactive criteria, capable of
representing synergy and redundancy effects, as well as ranking for
assessments with interval values. These models appear particularly
important for energy technology assessment, since many key
indicators (life cycle emissions, land-use intensity, health risks,
etc.) are intrinsically based on intervals.

One disadvantage of MCDA in applied energy is the reproducibility
problem, as the data have been collected using undisclosed research
methods or scoring systems due to uncertain sources. On the other
hand, an experimental design with data-driven analysis may help
improve reproducibility. For the US, the National Renewable Energy
Laboratory’s Annual Technology Baseline provides a comprehensive
resource that documents the current cost and performance
characteristics of generation options in a manner suitable for
comparative analysis (Mirletz et al., 2024). Regarding comparative
data on other impacts, related metrics are provided in aggregate by
generation type. An interesting set of databases, Our World in Data,
offers downloadable comparative data on deaths per Terawatt-hour
(TWh) and land-use intensity per MWh in a harmonized format,
summarizing findings from peer-reviewed literature in relevant
published reports (Our World in Data, 2022; 2025).

However, despite the fact that these datasets are open to the public,
a methodological gap persists in the research: most empirical
studies fail to integrate three aspects: (i) Hierarchical classification,
(i1) multilevel evaluation results, and (iii) interval modeling of both
performance and preferences within a general framework. This
article addresses this research gap and proposes a methodology
as a transparent and auditable decision support system for the
hierarchical classification of electricity generation technology into
classes ordered according to their sustainability characteristics.

3. METHODOLOGY

This section presents the methodological framework used to
evaluate electricity generation technologies. It describes the
formulation of the decision problem, the hierarchical structure
of criteria, the modeling of alternatives’ performances, and the
decision rules applied to assign technologies to ordered classes.

The proposed approach relies on a hierarchical multi-criteria
sorting model and explicitly accounts for imperfect information
by allowing both criteria evaluations and preference parameters to
be represented as intervals. The methodology is designed to ensure
transparency, consistency across levels of the criteria hierarchy,
and robustness of the final results and recommendations.

3.1. Problem Formalization

Let 4 = {a,,a,,...,a,} be the finite set of alternatives, where each
alternative a, represents an electricity generation technology
(e.g., coal, wind, solar).

The evaluation is conducted with respect to a finite set of criteria
structured as a hierarchy. Let G denote the set of all criteria nodes
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in the hierarchy (see Subsection 3.2 for more details) and let
Gy © G be the subset of elementary criteria (i.e., leaves of the
hierarchy). Each non-elementary criterion aggregates the
information provided by its direct descendants (children).

For each alternative a € 4 and each elementary criterion g € G,

the performance of a on g is denoted by g(a), which represents a
quantitative indicator (e.g., cost, emissions, land use). Due to
uncertainty in the recollection of the data or imprecisions in the
real world, many times the exact value of g(a) is unknown. To
account for data variability and imperfect information, these
performances are modeled as intervals:

g(a)=[g(a),g(a)]

where g(a) and g(a) denote, respectively, the lower and upper
bounds of the plausible performance of alternative @ on criterion g.

The decision problem is then formulated as an ordinal classification
(sorting) problem, where C = {C,C,,.. .,Cp} is a finite and totally
ordered set of classes, such that

G < C, <+--<C,,and higher-indexed classes correspond to

higher levels of overall sustainability performance (i.e., C, is more
desirable than Ci>)).

The goal is to determine the most convenient assignments (from
the perspective of a decision maker) of each alternative a € 4 to
at least one class C, € C. Such assignments are based on a
hierarchical outranking-based sorting model. For this purpose,
preference information from the decision maker is specified at
each node (criterion) of the hierarchy. For example (see
Subsections 3.4 and 3.5 for more details), let w, denote the relative
importance (weight) of criterion g, and let additional preference
parameters (e.g., thresholds or cutting levels) be defined as
required by the sorting procedure (Subsection 3.5). In line with
the treatment of imperfect information, these parameters may also
be represented as intervals:

At each non-clementary criterion, the model aggregates the
outranking relations of'its descendants, ensuring consistency with
the hierarchical structure. This aggregation allows the evaluation
and classification of alternatives not only at the global level, but
also at any intermediate level of the hierarchy.

The final class assignment for each alternative is obtained by
comparing its overall performance with respect to predefined class
profiles or decision rules, according to the selected hierarchical sorting
procedure. The non-compensatory nature of the model ensures that
insufficient performance on critical criteria can prevent assignment to
higher classes, even if other criteria exhibit favorable values.

3.2. Criteria Hierarchy and Construction of Indicators
As introduced in the previous subsection, the evaluation
of electricity generation technologies is conducted using a
hierarchically structured family of criteria, denoted by,

g = {go}kﬂl kﬁEa

Where g represents the overall evaluation objective, G; is the set
of intermediate (non-elementary) criteria, and G, is the set of
elementary criteria. The hierarchy is defined as a tree, where each
non-elementary criterion aggregates the information provided by
its direct descendants exploiting the preferences of a decision
maker.

The objective at the root of the hierarchy, g , is to assess the overall
sustainability performance of electricity generation technologies;
specifically, assign each technology to an ordinal class
(e.g., {Very low, Low, Medium, High, Very high} sustainability/
convenience). This objective is decomposed into four intermediate
criteria reflecting dimensions that are standard in energy planning
and technology assessment following recommendations of the
literature (Lovering et al., 2022; Mardani et al., 2021; Markandya
and Wilkinson, 2007; Our World in Data, 2022; 2025; Sovacool
et al., 2016; Wachs and Engel, 2021; Wulf et al., 2023):

8180 & &y &4}

where:

e g, represents economic performance,

e g, represents technical performance,

e g represents system relevance, and

e g, represents environmental and health impacts.

This decomposition is consistent with the standard sustainability
assessment of energy technologies, which emphasizes economic
feasibility, technical operability, system-level deployment,
and environmental and social externalities as distinct but
complementary dimensions (Lovering et al., 2022; Mardani et al.,
2021; Markandya and Wilkinson, 2007; Wulf et al., 2025).

3.2.1. Economic performance

The economic performance criterion g, captures the cost
characteristics of electricity generation technologies and is
decomposed as:

818818584

where:

e g, isthe capital cost (USD/kW)—investment required to build
a new electricity generation facility, normalized by installed
capacity,

e g, isthe fixed operation and maintenance (O&M) cost (USD/
kW -year) — recurring expenditures that are independent of
electricity output, such as staffing, routine maintenance,
insurance, and administrative expenses,

e g, is the variable O&M cost (USD/MWh) — expenses that
depend on electricity production, excluding fuel costs, such
as consumables, waste handling, and variable maintenance,
and

e g, isthelevelized cost of electricity (USD/MWh) — average
cost of producing one unit of electricity over the lifetime of a
generation asset, accounting for capital costs, operating costs,
fuel costs, and financing assumptions.
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These indicators are widely used in comparative assessments of
generation technologies and provide a coherent representation
of investment and operating costs under consistent modeling
assumptions (Mirletz et al., 2024). They can be directly
obtained from the Annual Technology Baseline published
by the National Renewable Energy Laboratory and from the
cost and performance studies of the U.S. Energy Information
Administration.

3.2.2. Technical performance
The technical performance criterion g, reflects the operational
characteristics of generation technologies and is defined as:

g2_>{g21}:

where g, denotes the capacity factor. This indicator measures the
utilization rate of installed capacity and can be directly extracted
from the same source. Capacity factor is a fundamental indicator
of technical performance and is commonly used to characterize
the operational reliability and intermittency of electricity
generation technologies (U.S. Energy Information Administration
(EIA), 2024).

3.2.3. System relevance
The system relevance criterion g, captures the actual role of each
technology in the electricity system and is decomposed as:

218,85}

where:

e g, is the existing installed capacity (MW) — total nominal
generating capacity of all operational units of a given
technology in the electricity system, and

e g, is the net electricity generation (TWh) — total amount of
electricity produced by a technology over a given period, after
accounting for plant-level consumption.

These criteria can be extracted from the U.S. Energy Information
Administration’s Electric Power Annual, specifically regarding
existing capacity and net generation. Unlike modeled cost
indicators, these measures reflect observed deployment and
operation, providing a system-level perspective on the relative
importance of each technology in the current electricity mix (U.S.
Energy Information Administration (EIA), 2024).

3.2.4. Environmental and health impacts

The environmental and health impacts criterion, g,, represents
non-market externalities associated with electricity generation
and is decomposed as:

818,880} »

where:

e g, isthe life-cycle land-use intensity (m*-year/MWh),

e g, is the death rate from accidents and air pollution (deaths/
TWh), and

e g, is the life-cycle greenhouse gas emission intensity
(gC0O2-eq/kWh).

All three criteria can be obtained directly from datasets published
by Our World in Data, which synthesize peer-reviewed life-cycle
assessment, epidemic, and emissions studies. Land-use intensity
values can be derived from life-cycle assessments reported by
UNECE and related studies, and are provided with minimum,
median, and maximum estimates, making them suitable for
interval-valued modeling (Lovering et al., 2022). Death rates
aggregate accident-related and air-pollution-related mortality
per unit of electricity generated, following established fuel-
cycle health impact analyses (Markandya and Wilkinson, 2007;
Sovacool et al., 2016). Life-cycle greenhouse gas emissions are
reported as CO2z-equivalent intensities and reflect full life-cycle
impacts rather than operational emissions alone (IPCC, 2022).

3.3. Performance Evaluation of Alternatives
Let
A=Aaa,,...,a }= {coal, natural gas, nuclear, hyderpower,
wind, and solar photovoltaic}

1°

denote the set of considered alternatives corresponding each to an
electricity generation technology. The performance of each
alternative is evaluated on the set of elementary criteria G, defined

in Subsection 3.2 and shown in Table 1. As stated before, for each
elementary criterion g€ G, and each alternative a € 4, the

performance evaluation is denoted by g(a). Depending on the
nature of the available data, evaluations take the form of either
point values or intervals. The collection of all evaluations defines
the performance matrix:

G= (g(a))aeA,gegE

For the economic criteria g,,,g,,,¢,:,€,, and the technical criterion
g,» €ach evaluation g(a) is represented by a single numerical
value. For Table 1, these values correspond to technology-level
reference assumptions under a fixed scenario and reference
year (moderate cost case and 2030). Capital cost values
(e.g., g,,(Coal) = 3905.6 USD/kw) represent the overnight
investment cost of a new plant, normalized by installed capacity.
For each technology, the reference configuration defined by the
data provider is used (e.g., new coal plant with average capacity
factor, combined-cycle natural gas plant, large-scale nuclear
reactor). No aggregation across criteria is performed at this
stage, and no normalization or scaling is applied. Fixed costs are
expressed per unit of installed capacity and capture expenditures

Table 1: Description of the criteria considered to evaluate
the technologies

Criterion Meaning Preference Data type
g, Capital cost Minimize Real
g, Fixed O&M Minimize Real
g, Variable O&M Minimize Real
g LCOE Minimize Real

g, Capacity factor Maximize Real
g Installed capacity Maximize Real
s Net generation Maximize Real
g, Deaths/TWh Minimize Interval
g, Land-use intensity Minimize Real
g, Life-cycle GHG Minimize Real
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independent of output, while variable costs are expressed per
unit of electricity generated and reflect production-dependent
expenses. These values are taken directly from the same reference
configurations used for capital costs.

When a criterion value is not reported for a given technology
under consistent assumptions, the corresponding entry in the
performance matrix is left undefined. Such cases are explicitly
retained and handled at the decision-model level rather than
through imputation.

System relevance criteria, g, and g,,, capture the observed
contribution of each technology to the electricity system.
These values are obtained from the U.S. Energy Information
Administration’s Electric Power Annual, specifically regarding
existing capacity and net generation. Unlike modeled cost
indicators, these evaluations reflect historical deployment and
operation, providing a complementary system-level perspective.
Both criteria are expressed as absolute quantities and reflect actual
deployment and operation. They are treated as benefit-type criteria,
as higher values indicate greater system presence.

Environmental and health-related criteria are evaluated using
normalized indicators expressed per unit of electricity generated
according to the datasets provided by Our World in Data (Ritchie,
2020; 2022). For criteria g,, (death rate) and g,, (life-cycle
greenhouse gas emissions), evaluations are represented as point
values:

gp(a)eR", gy(a)eR™.

For the land-use intensity criterion g, , evaluations are represented
as intervals:

gq(a)= [gu(a)ém (0)]

where the bounds correspond to the minimum and maximum
values reported across life-cycle assessments. Interval-valued
representation is used to preserve documented variability and to
avoid selecting arbitrary representative values.

Each elementary criterion is associated with a well-defined
preference direction. Cost-related, environmental, and health
criteria are formulated as criteria to be minimized, whereas system
relevance criteria are formulated as criteria to be maximized.

The performance matrix G provides the complete quantitative

description of alternatives required to apply the hierarchical multi-
criteria sorting model and is shown in Table 2.

Table 2: Performance matrix

1. Coal 3905.6 83.3 8.99 —
2. Natural Gas 1403.3 31.8 2.04 —
3. Nuclear 7616.4 175.0 2.80 84.4
4. Hydropower 8937.4 101.3 0.00 107.5
5. Wind 1483.7 29.9 0.00 32.7
6. Solar PV 1193.5 18.0 0.00 36.9

3.4. Hierarchical Multi-criteria Sorting Procedure

As reported in Section 2, the ELECTRE family is the most
prominent method using the so-called outranking approach,
one of the leading approaches in the literature about decision-
making. While traditional ELECTRE methods are effective in
many scenarios, they have limitations when handling uncertain or
imprecise data, which are common in real-world decision-making.
Furthermore, many decision problems are highly complex, and to
evaluate an alternative against a given criterion, it is necessary to
also evaluate it against sub-criteria.

This is where the so-called interval-based hierarchical outranking
approach comes into play (Fernandez et al., 2022b). Below,
we provide a brief explanation of this method. For the sake of
consistency, we will use here the notation presented in (Fernandez
et al., 2022b).

o Let A be the set of alternatives (potential actions).

e Let /g be the set of indices of all criteria in the hierarchy.

e Lety=1{g,g . gmrd(lg)} be the set of all criteria in the
hierarchy. Without loss of generality, we assume that
preference increases as a function of the values of the criteria.

e Let EL be the set of indices of all elementary criteria.

e Let N, the number of immediate subcriteria of a non-
elementary criterion g,.

e LetG,=1{g,, ,g,,  be thesetof immediate subcriteria of a
non-elementary criterion g,.

e Let/, the set of indices of all criteria in G,.

e Let EL(h) be the set of indices of all elementary criteria that
influence a non-elementary criterion g,.

e Let D(h) be the set of indices of all criteria that influence a
non-elementary criterion g, of a lower hierarchical level; when
J € D(h), then g It is said to be a descendant of g,.

e LetEL asubsetof EL, be the set of indices of all criteria that
are pseudo-criteria, that is, the subset of criteria where the
performance of the alternatives is not measured using interval
numbers.

e LetEL, asubsetof EL, be the set of indices of all criteria that
are interval numbers.

(Fernandez et al., 2022b) recommend using a partial overcoming

relationship, denoted as Sj € 4 x4, associated with each criterion

g € EL. This serves to indicate that “a is at least as good as b

from the perspective of g.”’; a, b € (4 xA4), together with a degree
. aqe ‘/

of credibility, 8 (a, b).

The calculation of Sj (a, b) depends on whether g is a pseudo-
criterion or an interval number. When g is an interval number, a
possibility function is required to determine if a criteria score is

— 197 828 [12,21] 24.6 970
— 509 1671 [0.9,1.3] 2.8 440
0.93 96 772 [0.2,0.5] 1.3 24
0.52 80 250 [14,33] 0.04 11
0.43 146 434 [0.4, 8.4] 0.03 6
0.27 110 205 [12.6,19] 0.02 53
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at least as good as another. It is possible to define the possibility
function as follows:

1 lf‘ pED>19
P(E>D)= Pep i 0= pep <1,
0 if pep<0

Where E = [e, e7] and D = [d, d'] are interval numbers and
et —d”

e’ —ef)+(a’+ —df)

Whene' =e” =eandd* =d” =d,P(E2D)={

pED:(
l ifex>d,

0 otherwise

Therefore, when g EEL, Bj(a, b) can be calculated as follows:
8(a, b) = P (g(a) > g (b));

And when g€ EL,:

5;(a.b)

g;(p)-g;(a)zp;.

DGO ) < )<, (5) g,

0 if g;(a)-g,;(b)2-q;.

where p; and g . represent the preference and indifference thresholds
for the criterion g The former establishes a range in which the
policymaker has a strict preference for one of the alternatives; the
latter establishes a range in which the policymaker is indifferent
given that the performance of the alternatives is sufficiently similar.

Now, the degree of credibility of aS,b when i & EL, denoted by
0,(a,b), can be calculated recursively by summing all the o.(a, b)
values to g € G,. Note that, when g € EL,, then: '

a(a, b)=d(a, b). (1)

This aggregation requires a criterion weight (considered as a
relative importance coefficient) that must be defined for each g,
€ G,; let’s denote this weight as W Other parameters associated
with g € G, can also be defined as a veto threshold, Vi (rejecting
any credibility of a§,b if gj(b) exceeds gj(a) by an amount greater
than th)' These parameters allow calculating a concordance index
y related to S, ¢,(a,b,y). This value represents the support of the
coalition of criteria according to aS,b, where y is the highest
credibility value of these criteria that support the claim. The
degree of credibility of the claim “the coalition of agreement y
considered is sufficiently strong” is then calculated as P(c,(a,b,y)
> 1,), where Z, is a threshold established by the policymaker to
determine whether a solid majority is constituted. The reader is
advised to consult (Fernandez et al., 2022b) for more details on
the calculation of ¢ (a,b,y), as well as some restrictions that the
aforementioned parameters must meet.

Using this notation, we can perform the ordinal classification
of electricity generation technologies by using the following

procedure (Fernandez et al., 2022b). The HI-INTERCLASS-nC
method is a novel approach that uses an interval-based hierarchical
outranking model to assign alternatives to preferentially ordered
classes. This methodology allows assignments to be made at
the level of any non-elementary criterion g,. C"is defined as a
finite set of classes C" = {C,,..., C,,..., C,}", M > 2, ordered
with increasing preference with respect to g,. The subset
R = {rkj, Jj=1,..., card(R))} represents the reference alternatives
that characterize C,, with k= 1,..., M. The total set of reference
alternatives is {r, R ,..., R, r,,.,}, where r and r, are the anti-
ideal and ideal alternatives, respectively.

The credibility indices between an alternative a and class C, are
defined as:

h({a}’Rk): j=1,.ﬁ%(&){h(aﬂrk,j )}

h(Rk’{a}) :jzl"ﬁgﬁ{(&){h(rk,j’a)}

Where h(a,r,q.) is calculated through equation (1).

For a given value 3> 0.5, the hierarchical categorical classification
relationships are defined as follows:

a) aS,(P)R, < o,({a}, R)>p;

b) RS, (Ba Symbol o,(R,,{a}) >p.

The selection function is defined as: i ({a}, R) = min{c, ({a },
R).c,(R, {a})}.

The method uses two joint rules to suggest assignments: the
descending rule and the ascending rule, which must be used
together. Each of these rules selects only one class for the possible
assignment of an alternative.

Descending assignment rule: First, establish § and 4. Then, define

the class set C"and the representative subsets of the alternatives

{roR....R, 1}

e Compare a with R for k= M,..., 0, up to the first value, £,
such that aS, (B)R,.

e For k=M, select C, as a possible category to assign a.

e For0<k<M,ifi({a},R)=1i({a}, R, ,,), then select C, as
a possible category to assign a; otherwise select C,

k+1°
e For k=0, select C, as a possible category to assign a.

Ascending assignment rule: First, establish # and 4. Then, define

the class set C"and the representative subsets of the alternatives

{roR....R, 1}

e Compare a with R, for k = 1,..., M +1, up to the first value,
k, such that R S, (B)a.

e Fork=1,select C, as a possible category to assign a.

e Forl<k<M+1,ifi({a},R) =i ({a}, R, ), then select C,
as a possible category to assign a; otherwise select C, .

e Fork=M+1,select C, as a possible category to assign a.

3.5. Preference Modeling

The assignment of alternatives to ordered classes requires the
specification of preference information reflecting the decision
maker’s priorities and tolerance to imperfect knowledge. In this
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work, preference modeling is performed in a manner consistent
with the hierarchical structure of criteria and with the use of
interval-valued evaluations according to the aggregation rules
described in subsection 3.4.

3.5.1. Criteria weights
The relative importance of criteria is modeled using weights. For
each non-elementary criterion g € G, , a vector of local weights
is defined over its direct descendants. Let cA(g) denote the set of
children of criterion g.

To account for imprecision in preference elicitation, weights are
allowed to take the form of intervals:

wy, €[wy,, W]

where the bounds represent admissible ranges reflecting
uncertainty or variability in the decision maker’s judgments.
Interval-valued weights are specified independently at each node
of the hierarchy and must satisfy:

0<w, <w,,Vhech(g)

ZV_VhSI

hech(g)

Z w;, 21 Several elicitation strategies can be used to elicit the
hech(g)
values of these parameters, depending on the availability,
consistency, and cognitive effort expected from the decision maker
(Singh and Pant, 2021; Solares et al., 2022; Solares et al., 2025).
The first group of methods is based on direct assignment; the
decision maker assigns weights directly to each criterion
(Kizielewicz et al., 2024). A second group includes ratio-based
methods, where the decision maker compares criteria in terms
of relative importance (e.g., Figueira and Roy, 2002). This can
be done by stating how many times one criterion is more
important than another, or by allocating a fixed number of points
among criteria. Another possibility is indirect or learning-based
approaches. In these methods, weights are inferred from example
decisions, preference statements, or observed choices. The
elicited weights, often expressed as feasible intervals, are those
that best reproduce the decision maker’s observed behavior while
respecting the hierarchical constraints (e.g., Fernandez et al.,
2023; Lopez et al., 2023; Navarro et al., 2023). All these
elicitation modes can be combined across different levels of the
hierarchy, allowing the decision maker to use simpler judgments
at higher levels and more detailed assessments where greater
discrimination is required.

Table 3 describes the weights used in this work; they aim to reflect
plausible relative importance relations within the criteria hierarchy.
All intervals were normalized within each node to maintain
coherence in the hierarchical aggregation. For example, at the
Economic performance node, the weights of capital cost, fixed and
variable operation and maintenance, and LCOE were expressed
as overlapping intervals reflecting their comparable relevance in
cost-based assessments, with the latter retaining a slightly higher
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central importance. A similar principle was applied at the System
relevance and Environmental and health impacts nodes, where
intervals reflect the fact that several indicators contribute jointly
and none can be assumed to dominate unequivocally.

At the root node, the four main dimensions were weighted using
the same rule: their relative importance was derived from the
aggregate discriminatory power of their elementary criteria,
and then expressed as intervals to reflect uncertainty in cross-
dimensional trade-offs.

3.5.2. Preferential thresholds

To avoid overfitting and keep thresholds comparable across
heterogeneous units, we define them as fixed fractions of each
criterion’s observed range in the matrix; that is, thresholds were
set as constant fractions of observed dispersion (5%/15%/40% of
the range), which allows us to get scale-consistent discrimination
without injecting artificial precision. The thresholds required to
operationalize the method described in Subsection 3.4 are shown
in Table 4. Note how for g, , being defined as an interval criterion,
the thresholds are not required to be defined.

3.5.3. Class profiles and ordered categories

Given the nature of the problem, a three-category ordinal
scale is appropriate. It allows discrimination without imposing
excessive precision and is consistent with exploratory and
policy-oriented analyses. The following ordered categories are
proposed (Table 5):

Table 3: Criteria weights

Root node Economic performance [0.30, 0.45]
Technical performance [0.20, 0.35]
System relevance [0.15,0.35]
Environmental and health impacts [0.25, 0.40]
Economic Capital cost [0.20, 0.25]
performance
Fixed O&M [0.25,0.35]
Variable O&M [0.25,0.45]
LCOE [0.10, 0.20]
Technical Capacity factor [1.00, 1.00]
performance
System relevance Installed capacity [0.35, 0.45]
Net generation [0.40, 0.60]
Environmental Land-use intensity [0.20, 0.25]
and health
impacts
Deaths/TWh [0.45, 0.50]
Life-cycle GHG [0.30, 0.40]
Table 4: Preferential thresholds
g, 8937.4-1193.5=7743.9 3872 1161.6  3097.6
g, 175.0-18.0=157.0 7.9 23.6 62.8
g5 8.99-0.00=8.99 0.45 1.35 3.60
g 107.5-32.7=74.8 3.74 11.22 29.92
2 0.93-0.27=0.66 0.03 0.10 0.26
g 509-80=429 21.5 64.4 171.6
g5 1671-205=1466 73.3 219.9 586.4
g 24.6—0.22=24.58 1.23 3.69 9.83
i 970—6 = 964 48.2 144.6 385.6
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Table 5: Class profiles and ordered categories
Criterion r, r, r,
(Non-acceptable) (Acceptable) (Highly acceptable)

g, 7 500 2500 1200
g5, 150 40 20
- 6.0 2.0 0.5
g 95 40 30
2, 0.30 0.50 0.75
g 100 150 400
g, 300 600 1200
g [10,20] [1,5] [0.2,1]
g4 15 5 1
g, 800 200 50

1. r — Non-acceptable. Technologies that present poor overall
performance, typically driven by high costs, low system
relevance, or high environmental and health impacts.

2. 1t — Acceptable. Technologies that exhibit balanced
performance, with moderate costs and impacts, but without
clear dominance across most criteria.

3. r — Highly acceptable. Technologies with strong overall
performance, characterized by low environmental and health
impacts, good system relevance, and competitive economic
or technical indicators.

The obvious ordering of these classes is:
C <G, <G

For each category, a reference profile (synthetic alternative)
is defined. Each profile is constructed using values that are
representative of the empirical ranges observed in the performance
matrix. For cost and impact criteria, lower values are preferred;
for capacity factor, installed capacity, and net generation, higher
values are preferred.

4. RESULTS

This section presents the results of the hierarchical multi-criteria
sorting procedure applied to the set of electricity generation
technologies. Alternatives are evaluated and assigned to ordered
classes by considering their performances across all non-
elementary criteria of the hierarchy, allowing the analysis to be
conducted at different levels of aggregation. This hierarchical
perspective enables the identification of strengths and weaknesses
of each technology within individual dimensions, as well as their
overall classification when all criteria are jointly considered. The
results are reported for each aggregation level, highlighting the
impact of economic, technical, system-related, and environmental
and health dimensions on the final assignments.

4.1. Overall Classification Results

This subsection reports the overall classification results obtained
at the overall criterion g,, where all non-elementary criteria
of the hierarchy are jointly considered. Unlike other sorting
approaches, the proposed approach may assign an alternative to
arange of adjacent classes, reflecting the presence of uncertainty,
imprecision, or borderline performance with respect to class
profiles.

Recall that C={C,,C,,C,} denote the ordered set of classes,
corresponding to Non-acceptable, Acceptable, and Highly
acceptable, respectively, as described in Subsection 3.5.3. For
each alternative a € A, the result of the sorting procedure is an
assignment interval [C,,C}], indicating that the alternative can be
assigned to any class between C, and C, under admissible
preference parameter values. Range-based assignments provide
insight into the robustness of the classification results.

Coal is assigned to the range Non-acceptable—Acceptable
([C,,C\]). This borderline classification is primarily driven by
coal’s very poor performance on environmental and health
criteria, particularly deaths per TWh and life-cycle greenhouse
gas emissions, which clearly exceed the thresholds associated
with higher acceptability classes. Although coal exhibits strong
system relevance, with high installed capacity and net generation,
and satisfactory technical characteristics, these strengths are
insufficient to robustly compensate for its environmental drawbacks
under most admissible weight configurations. Consequently, coal
cannot be stably assigned beyond the acceptable class and remains
sensitive to the relative importance given to environmental and
health impacts.

Natural gas is robustly assigned to the Acceptable class ([C|,C]).
Its classification is driven by a balanced performance profile:
natural gas shows relatively favorable economic indicators and
strong system relevance, combined with moderate environmental
impacts. While its greenhouse gas emissions and health impacts
are significantly lower than those of coal, they remain well above
the thresholds required for the Highly acceptable class. At the same
time, its performance is consistently superior to the non-acceptable
profiles, resulting in a stable intermediate classification.

Nuclear is robustly assigned to the Highly acceptable class
([C,,C,]). This result is mainly driven by nuclear energy’s
outstanding performance on environmental and health criteria,
particularly very low greenhouse gas emissions and low death
rates per unit of electricity generated. In addition, its high capacity
factor provides strong technical support for the assignment.
Although nuclear exhibits high capital and fixed operating
costs, the hierarchical aggregation and the weight ranges allow
these economic disadvantages to be outweighed by its favorable
environmental and technical characteristics, leading to a stable
assignment to the highest class.

Hydropower is assigned to the Acceptable class ([C|,C\]). Its
classification is explained by mixed performance across criteria.
Hydropower performs well on environmental and health criteria,
with low emissions and death rates, but shows relatively high
capital costs and significant land-use intensity. Its moderate
system relevance and capacity factor further position it between
the lower and upper class profiles. As a result, hydropower does
not consistently meet the thresholds required for the Highly
acceptable class, but it clearly outperforms the non-acceptable
profiles, yielding a robust intermediate assignment.

Wind is robustly assigned to the Highly acceptable class (([C,,C,]).
This assignment is primarily driven by its very favorable
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environmental and health performance, including extremely low
death rates and greenhouse gas emissions, as well as low variable
operating costs. Although wind exhibits lower capacity factors and
moderate system relevance compared to dispatchable technologies,
these limitations are insufficient to offset its strong performance
on heavily weighted environmental criteria. Consequently, wind
remains in the highest class across all admissible preference
configurations.

Solar photovoltaic technology is also robustly assigned to the
Highly acceptable class (([C,,C,]). Similar to wind, this result is
driven by very low health impacts and low life-cycle greenhouse
gas emissions, combined with low operating costs. While solar
PV displays relatively low capacity factors and non-negligible
land-use intensity, these aspects do not prevent it from satisfying
the profiles associated with the highest acceptability class when
the full set of criteria is considered.

4.2. Results at the Economic Performance Level

This subsection analyzes the classification results obtained
when alternatives are evaluated exclusively under the economic
performance criterion g, which aggregates capital cost, fixed
operation and maintenance cost, variable operation and maintenance
cost, and levelized cost of electricity. At this level, assignments
reflect purely cost-related considerations, independently of
technical, system-level, or environmental and health impacts.

Coal is assigned to the range Non-acceptable—Acceptable.
This classification is primarily driven by its high capital cost
and relatively high variable operating costs, which exceed the
thresholds associated with the higher acceptability class. Although
coal does not consistently fall below all non-acceptable economic
profiles, its cost structure prevents a robust classification beyond
the acceptable class under most admissible weight combinations.
Natural gas is robustly classified as Acceptable. This result is
mainly explained by its relatively low capital cost and moderate
fixed and variable operating costs. These characteristics allow
natural gas to comfortably satisfy the acceptable economic profiles,
while its cost performance remains insufficient to meet the most
demanding thresholds associated with the highly acceptable class.

Nuclear is classified within the Non-acceptable—Acceptable
range at the economic level. This assignment is driven by very
high capital and fixed operating costs, which strongly penalize
nuclear energy under purely economic considerations. Although
its variable operating costs and levelized cost of electricity are
comparatively favorable, these advantages are not sufficient
to compensate for the large upfront investment requirements,
resulting in a borderline economic classification. Hydropower
is also assigned to the Non-acceptable—Acceptable range.
This outcome is largely explained by high capital costs and
non-negligible fixed operating costs, which limit its economic
attractiveness despite low variable operating costs. As a result,
hydropower does not robustly satisfy the economic thresholds
required for higher acceptability.

Wind is robustly assigned to the Highly acceptable class.
This classification is driven by its low capital cost, very low

fixed and variable operating costs, and competitive levelized
cost of electricity. Even when conservative economic weight
configurations are considered, wind consistently meets or exceeds
the profiles associated with the highest economic acceptability
class. Solar photovoltaic technology is also robustly classified as
Highly acceptable at the economic level. This result is explained
by its low capital cost, minimal operating costs, and favorable
levelized cost of electricity. Although its capacity factor is low,
this aspect does not influence the economic-level evaluation and
therefore does not affect its classification under g,.

4.3. Results at the Technical Performance Level

This subsection presents the classification results obtained when
alternatives are evaluated under the technical performance criterion
g,» which is defined solely by the capacity factor. As g, consists
of a single elementary criterion, no aggregation is required at this
level, and the assignments directly reflect differences in average
utilization rates across technologies.

Nuclear is robustly assigned to the Highly acceptable class due to its
very high capacity factor, which consistently exceeds the threshold
associated with the highest acceptability profile. This result reflects
nuclear energy’s ability to operate at near-continuous output over
extended periods. Coal, natural gas and hydropower are assigned
to the Acceptable class. Their capacity factors are sufficient to
meet the acceptable technical performance threshold but do not
consistently reach the level required for classification as highly
acceptable. Finally, wind and solar photovoltaic technologies
are assigned to the Non-acceptable class, since their relatively
low capacity factors, inherent to variable renewable energy
sources, prevent them from meeting the thresholds associated
with acceptable or highly acceptable technical performance when
capacity factor is considered in isolation.

4.4. Results at the Environmental and Health Impact
Level

Here, we present the classification results obtained when
alternatives are evaluated exclusively under the environmental
and health impact criterion g,, which aggregates land-use intensity,
death rates associated with electricity generation, and life-cycle
greenhouse gas emissions. At this level, assignments reflect the
non-market externalities of electricity generation technologies,
independently of economic costs, technical performance, or
system relevance.

For this scenario, coal is robustly assigned to the Non-acceptable
class. This result is driven primarily by its very high life-cycle
greenhouse gas emissions and its exceptionally high death rate
per unit of electricity generated. Even under permissive weight
configurations, these impacts consistently exceed the thresholds
associated with acceptable performance, leading to a stable
classification in the lowest class.

Natural gas is assigned to the Acceptable class. Its classification
reflects a substantial improvement over coal in terms of greenhouse
gas emissions and health impacts, yet these indicators remain
significantly higher than those of low-carbon technologies.
Although natural gas exhibits relatively low land-use intensity,
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this advantage is insufficient to justify classification as highly
acceptable when health and climate impacts are considered.
Hydropower is also assigned to the Acceptable class. While
hydropower performs well in terms of greenhouse gas emissions
and death rates, its land-use intensity is relatively high and exhibits
substantial variability. This combination results in an intermediate
classification, as hydropower does not consistently satisfy the most
demanding environmental and health profiles across all admissible
parameter values.

Nuclear is robustly assigned to the Highly acceptable class. This
classification is driven by very low greenhouse gas emissions
and one of the lowest reported death rates per unit of electricity
generated. In addition, nuclear energy exhibits extremely low land-
use intensity. These characteristics allow nuclear technology to
satisfy the highest environmental and health thresholds under all
admissible weight configurations. Wind is also classified as Highly
acceptable. Its assignment is explained by extremely low death
rates and very low life-cycle greenhouse gas emissions, combined
with low land-use intensity when considering direct impacts. These
favorable characteristics dominate any variability in land-use
estimates and lead to a stable classification in the highest class.
Finally, solar photovoltaic technology is also robustly assigned
to the Highly acceptable class. Despite exhibiting higher land-
use intensity than wind and nuclear, solar PV maintains very
low death rates and relatively low greenhouse gas emissions.
These advantages are sufficient to consistently satisfy the profiles
associated with the highest environmental and health acceptability
class.

5. CONCLUSION

This paper proposed a hierarchical multi-criteria sorting
framework to support the evaluation of electricity generation
technologies under multiple, potentially conflicting dimensions.
Rather than producing a single ranking, the approach assigns
technologies to ordered acceptability classes, providing a
decision-oriented perspective that is well suited to policy
analysis, investment screening, and strategic planning in the
energy sector. The empirical application to major electricity
generation technologies in the United States demonstrates the
ability of the proposed approach to generate interpretable and
robust classifications. Low-carbon technologies, particularly
nuclear, wind, and solar photovoltaic, are consistently classified
in the highest acceptability class when economic, technical,
system-level, and environmental and health criteria are jointly
considered. Fossil-based technologies, especially coal, exhibit
less favorable and less robust classifications, reflecting the
strong influence of environmental and health impacts on overall
acceptability. Technologies such as natural gas and hydropower
display intermediate classifications, highlighting the presence of
trade-offs and sensitivity to preference structures.

A key contribution of the study is the explicit treatment of
uncertainty. Range-based class assignments reveal when
classifications are robust and when they depend on assumptions
regarding criteria importance or performance variability. This
feature avoids false precision and provides decision makers

with more informative insights than conventional single-score
or deterministic ranking approaches. Moreover, the hierarchical
structure allows results to be analyzed at different levels of
aggregation, supporting nuanced interpretation and facilitating
communication with stakeholders.

The proposed framework is subject to several limitations. The
analysis is conducted at the technology level and does not capture
heterogeneity across individual plants or regional contexts. In
addition, the set of criteria is constrained by data availability and
does not explicitly include factors such as grid integration costs,
market dynamics, or policy instruments. Future research could
extend the framework to incorporate plant-level data, dynamic
scenarios, or additional financial and regulatory indicators, as well
as explore participatory preference elicitation processes involving
multiple stakeholders (Diaz et al., 2022; Solares et al., 2022).

The study illustrates how hierarchical multi-criteria sorting can
serve as a transparent and flexible decision-support tool for
evaluating electricity generation technologies in complex and
uncertain environments. By combining rigorous decision analysis
with publicly available data, the proposed approach offers a
practical contribution to the assessment of energy technologies
and supports more informed and responsible decision-making in
the context of energy transition.

Several directions for future research emerge from this study.
First, the proposed framework could be extended to a plant-
level or regional analysis, allowing heterogeneity in technology
performance, environmental impacts, and system integration
conditions to be explicitly modeled. Second, additional criteria
relevant to financial decision-making, such as investment risk,
revenue volatility, or exposure to policy and market uncertainty.
Third, the framework could be adapted to dynamic and scenario-
based settings, enabling the evaluation of technologies under
alternative demand, policy, or decarbonization pathways. Finally,
future work could explore participatory preference elicitation
involving multiple stakeholders, such as policymakers, investors,
and system operators, to assess how differing perspectives
influence classification outcomes.
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