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ABSTRACT: In this study we analyze the impact of a radical change in nuclear electricity costs on 
the optimal electricity generation technology mix (EGTM) and constrain the value of information 
(VOI) on future nuclear costs. We consider three nuclear cost events and four carbon emissions caps. 
We develop a two-stage framework for energy-economic model MARKAL to eliminate foresight of 
future nuclear cost movements. We examine how the EGTM responds to these movements under 
alternative caps and analyze how these movements affect the cost of each cap. We define the expected 
savings from perfect foresight (ESPF), an upper bound on the VOI. We found that with current 
technologies, carbon mitigation that does not rely heavily on nuclear electricity is economically 
insensible. The Strong Cap is extremely costly because it restricts flexibility to respond to cost signals 
in choosing among technologies. The ESPF is highest under the Medium Cap by a substantial margin. 
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1. Introduction 
 Research has suggested that the development of advanced technologies could reduce the cost 
of achieving carbon stabilization over the next century by more than 50%, resulting in global 
economic benefits in the hundreds of billions or trillions of dollars (Clarke et al., 2006).  However, the 
timing and effect of radical technological change are difficult (or impossible) to predict (Bosetti and 
Tavoni, 2009). Future nuclear energy costs are particularly uncertain. On the one hand, a major 
breakthrough in an advanced nuclear technology such as nuclear fusion, small modular reactors, or 
pebble bed reactors could result in significantly lower nuclear costs (Lako et al., 1998); on the other 
hand, a large nuclear disaster or stricter safety regulations could result in significantly higher costs 
(Cooper, 2011). 
 The goals of this study are to (1) analyze the impact of a radical change in nuclear electricity 
costs on the optimal electricity generation technology mix (EGTM) for carbon reduction and (2) 
constrain the value of information (VOI) on future nuclear electricity costs. We use the energy-
economic model MARKAL to conduct this analysis. The standard version of MARKAL assumes that 
economic actors have perfect foresight of future system parameters. To incorporate a lack of foresight 
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of future cost changes, we build on a concept introduced by Keppo and Strubegger (2010) and run 
MARKAL in multiple stages. This framework allows the system to operate prior to the cost change as 
if it does not anticipate it, and then respond to the change after it occurs. To constrain the VOI we 
introduce a quantity called the expected savings from perfect foresight (ESPF) and define it as the 
difference between expected minimized discounted system costs (over a probability distribution of 
nuclear cost movements) in the multiple-stage framework and in the standard one-stage framework. 
The ESPF serves as an upper bound on the VOI on future nuclear costs. More specifically, we (1) 
define scenarios according to future nuclear electricity costs and carbon cap trajectories; (2) run the 
MARKAL model assuming both no foresight and perfect foresight of nuclear electricity cost changes 
in 2030; (3) analyze the response of the EGTM to these nuclear cost changes under the various carbon 
caps; (4) determine the economic cost of imposing each carbon cap with different future nuclear 
electricity costs; and (5) calculate the ESPF as a means of constraining the VOI on future nuclear 
costs. 
        This article is organized as follows. Section 2 briefly describes technological uncertainty, 
foresight, and VOI in the context of energy-economic models. In Section 3 we provide a brief 
overview of MARKAL and describe the extension to the two-stage framework.  We introduce the 
ESPF upper bound on the VOI in Section 4. Section 5 describes the carbon targets and nuclear 
electricity cost events that combine to form the scenarios analyzed in this study. In Section 6, we 
examine how the EGTM varies across scenarios and draw conclusions about how electricity 
generation would respond to a radical change in nuclear costs. In Section 7, we report the cost of 
imposing each carbon cap assuming different future nuclear electricity costs as well as our ESPF 
calculations. Section 8 suggests some potentially interesting extensions to this study and related future 
research projects. We conclude in Section 9 with a summary of our most significant findings. 
 
2. Technological Uncertainty, Foresight, and the Value of Information 

2.1. Technological Uncertainty 
 A number of researchers have discussed technological change in the context of climate policy 
and energy-economic models (e.g., see Weyant and Olavson, 1999; Goulder and Schneider, 2000; 
Goulder and Mathai, 2000). Clarke and Weyant (2002) indicate that incorporating uncertainty into 
energy-economic models is extremely difficult, especially as it relates to technological change.    
 Van der Zwann and Seebregts (2004) provide an overview of modeling, methodological, and 
parameter uncertainties related to technology. Their comparison of the MARKAL and DEMETER 
models — with endogenous and exogenously-defined technological change — demonstrated that 
results (i.e., policy outcomes) may be particularly sensitive to these assumptions. Gillingham et al. 
(2007) also stress that modeling technological change is (1) a “critical determinant” in the estimation 
of results and (2) amenable to different approaches depending on the overall purpose of the analysis. 
Jaccard et al. (2003) discuss uncertainty surrounding technological innovation, implications for future 
financial costs, and how uncertainty increases as the time horizon is extended. Uncertainty in the cost 
assumptions of technologies can affect the optimal timing of abatement measures and EGTM. These 
effects often occur when an optimization program selects one technology to be deployed before 
another simply based on the technology that costs the least to deploy in order to achieve some 
energy/environmental policy goal. More specifically, if (1) a technology is initially deployed based on 
highly uncertain cost assumptions but usually higher costs than established technologies and (2) its 
capital costs in subsequent time periods decrease as a result of endogenous learning, then this 
technology may have a comparative advantage over other abatement technologies (a phenomenon 
known as “technological lock-in”). Zwaneveld (2008) analyzed how certain technologies might be 
considered relatively inferior during one time, but superior during a subsequent era, from a least-cost 
perspective.     
 Bosetti and Tavoni (2009) used the WITCH model to show how modeling innovation as an 
uncertain process in a stochastic framework leads to higher investment in research and development 
(R&D), and to lower policy costs. They noted, however, that “the rigidity of the energy sector — 
characterized by long-lasting investments with limited substitutability — is shown to constrain the 
contribution of a technology breakthrough solely in the electricity sector” (p. S25). 
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 Smekens (2005) incorporated R&D shocks into the MARKAL model as an approximation of 
two-factor learning curves (TFLC). This analysis showed that R&D shocks have a limited impact on 
cost reduction. The author indicated that the role of technological assumptions in determining 
deployment is a subject that should be investigated in further detail. 

2.2. Foresight 
 Perfect foresight, in the context of energy-economic modeling, is the assumption that the 
optimizing agent can predict the future values of parameters with total certainty. Some popular 
energy-economic models, including the standard variant of MARKAL used in this study1, assume 
perfect foresight, and as a result, the agent has perfect information about future time periods (e.g., 
technology costs) and is able to make optimal decisions today based on this information. To fully 
incorporate uncertainty would require the use of a stochastic simulation model. However, some 
researchers note that solving sophisticated stochastic models is “currently beyond available 
computational resources” (e.g., see Babiker et al., 2009). Furthermore, the probabilities that define the 
stochastic processes are themselves difficult to estimate accurately.               
 Keppo and Strubegger (2010) introduced a limited foresight method into an energy-economic 
model, MESSAGE. The authors provided an alternative decision framework, where “information for 
the full timeframe is not available immediately and sequential decision making under incomplete 
information is implied” (p. 2033). These authors evaluated possible consequences of limited foresight 
and estimated system-wide effects using three different assumptions concerning the decision horizon: 
(1) a model run where perfect foresight was assumed for the full timeframe of analysis (i.e., 2100); (2) 
a run where an unforeseen change occurred in the middle time period (i.e., 2050/2060); and (3) a run 
where decisions were made at each 10 year time step and always for a decision horizon of 30 years. 
Keppo and Strubegger (2010) concluded, among other things, that rapid consumption of oil and gas to 
achieve short-term cost reductions in their limited foresight cases led to under-investment in 
alternative energy sources such as nuclear. 

2.3. Value of Information 
 A number of researchers have quantified the value of better (or perfect) information.  Baker 
and Peng (2010) explored the value of better information on technological change. They estimated the 
expected value of better information (EVBI) obtained through expert elicitations about future 
technologies, including nuclear generation. They found that the EVBI is very large in comparison with 
the cost of performing expert elicitations and that the EVBI is higher for technologies with larger 
R&D budgets (e.g., nuclear).  
 Eppel and Winterfeldt (2008) conducted a VOI analysis for nuclear waste storage tanks, 
finding that VOI estimation approaches could be used to improve the collection of data about the 
composition of nuclear tank wastes and for subsequent decisions about tank-waste management.      
 Hu and Hobbs (2010) employed a two-stage stochastic version of MARKAL to estimate the 
relative importance of resolving uncertainties including (1) electricity demand growth, (2) natural gas 
prices, and (3) electricity sector greenhouse gas regulations. The authors estimated an expected value 
of perfect information (EVPI), expected cost of ignoring uncertainty, and the value of policy 
coordination (the cost saved by avoiding surprise changes in policy). This analysis found that system 
costs are most sensitive to greenhouse gas regulation uncertainty (i.e., reducing this policy uncertainty 
provides the greatest value to market participants).      
 Although perfect information rarely arises in practice, incorporating it in a model allows 
researchers to place an upper bound on the VOI. This suggests a maximum level of resources that 
should be allocated to obtaining more information about the uncertainty. In the context of a stochastic 
model, the EVPI serves as this upper bound. However, there is no such equivalent for a deterministic 
model run using a multiple-stage framework to incorporate a lack of foresight. 
 
 
 
                                                             
1 This study features the standard MARKAL variant in which parameters are deterministic and the agent has 
perfect foresight. For information on alternative MARKAL variants that incorporate near-sighted optimization or 
stochastic treatment of parameters, see the MARKAL documentation (Loulou et al., 2004). 
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3. MARKAL 
3.1. Brief Overview of the MARKAL Model 

 MARKAL is a popular energy-economic model that minimizes the total discounted costs of 
the energy supply and demand system over an analysis period (usually to 2050). EPA (2006) used the 
MARKAL model to conduct scenario analyses of technology options for the U.S. electricity sector. 
Like other energy-economic models, a number of constraints must be satisfied including assumptions 
about future production growth, pollution, and resource availability. In this analysis, we parameterize 
the model using the EPA’s 2008 MARKAL database (EPA, 2008), but eliminate future nuclear 
electricity capacity constraints.   
 The standard version of MARKAL does not incorporate technological change. A more 
sophisticated approach is to define technological change (cost and efficiency) trajectories exogenously 
according to pre-determined functional forms. An even higher level of sophistication is to incorporate 
endogenous technological change. This configuration allows costs to vary as a function of cumulative 
capacity according to performance curves. However, modeling technological change as a steady, 
gradual process involving only technologies that are currently operating or in development ignores a 
critical reality: radical technological change — such as a key technological breakthrough or major 
disaster — can dramatically alter the evolution of the energy sector (e.g., see Clarke et al., 2006). 

3.2. One-Stage and Two-Stage MARKAL Frameworks 
 In this analysis, we considered the time horizon 2000 to 2050. We assumed that changes in 
nuclear electricity costs occur in 2030 and perform model runs using both one-stage (perfect foresight) 
and two-stage (no foresight) frameworks.  
 The standard one-stage MARKAL framework assumes perfect foresight. For the purposes of 
this study, this means that the optimizing agent minimizes discounted system costs from the 
perspective of year 2000 knowing exactly how nuclear costs will change in 2030. This change is 
reflected in the anticipated transition from parameters (i.e., costs) P1 to parameters P2 as illustrated in 
Figure 1.   
 

Figure 1. One-stage MARKAL framework. 

 
 
 Alternatively, the two-stage framework assumes no foresight. In this case, the optimizing 
agent minimizes discounted system costs from the perspective of the year 2000 without anticipating 
the cost change in 2030, and then must suddenly react to any cost movement that occurs. The two-
stage framework works as follows. First, we allow MARKAL to run over the entire time horizon 
without any change in costs in 2030 (base run). Next, we re-run MARKAL assuming a change in 
nuclear generation costs (holding all other parameter values constant) beginning in 2030 and using the 
state of the base run in that year as its initial state (see Figure 2). 
 

Figure 2. Two-stage MARKAL framework. 

 
 
4. Expected Savings from Perfect Foresight 

We first clarify what is meant by the EVPI used with stochastic frameworks and then define 
the ESPF, a similar upper bound on the VOI that can be derived in the context of a deterministic cost-
minimization model run in multiple stages to incorporate a lack of foresight. 

2030 2000 2050 P1 P2 

2030 2000 2050 P1 P1 
 

P2 
 

State of model at 2030 
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The EVPI on an uncertainty is defined such that the value of the decision situation with 
perfect information and additional cost EVPI is equal to the value of the current decision situation. 
Assuming risk neutrality, the EVPI is just the difference between the value of a decision situation with 
perfect information and the value of the current decision situation. Referring specifically to a cost-
minimization problem, 

퐸푉푃퐼 = 푚푖푛 퐸[퐶(푥, 푃; 0, 푇)] − 퐸[푚푖푛 퐶(푥, 푃; 0, 푇)] (1) 
where P is a random variable representing the values of all parameters, x represents a choice of 
actions, T is the time horizon, and C(x,P;t1,t2) is the cost of taking actions x under parameter values P 
from time t1 to time t2. The first term is the expected cost of the current decision situation. In this case, 
P is unknown and x is chosen to minimize the expected cost over the probability distribution of P. The 
second term is the expected cost of the decision situation with perfect information. For each outcome 
P, the optimizing agent chooses the x that minimizes cost, so the expected value of these minimized 
costs is taken over the probability distribution of P. Note that the second term cannot be greater than 
the first term because acquiring perfect foresight cannot result in a higher minimized cost. Therefore, 
EVPI is non-negative.  
 The EVPI places an upper bound on VOI, but it is not well defined for deterministic 
optimization models such as MARKAL. The first term in (1), which corresponds to the current 
decision situation, describes a stochastic framework in which actions are declared before the 
uncertainty is resolved. Given that the standard version of MARKAL and many other optimization-
based energy-economic models do not treat parameters stochastically, the EVPI is incompatible with 
these models and cannot be used to constrain the VOI. 
 For this reason, we define an upper bound on the VOI that can be derived in the context of a 
deterministic cost-minimization model run in multiple stages to incorporate a lack of foresight: the 
expected savings from perfect foresight (ESPF). The current decision situation is the two-stage 
framework with a lack of foresight. The optimizing agent selects actions x1 to minimize cost over the 
entire time horizon [0,T] believing that the current parameter values P1 will persist. When the 
parameter values change to P2 unexpectedly at time τ, the agent selects new actions x2 that minimize 
cost over the remainder of the time horizon under P2. The decision situation with perfect information is 
the one-stage framework with perfect foresight. The optimizing agent selects actions x to minimize 
cost over the entire time horizon [0,T] knowing that the parameter values will change from P1 to P2 at 
time τ. In general, 
 퐸푆푃퐹 = 퐸 퐶(푥∗, 푃 ; 0, 휏) + 푚푖푛 ∈ ( )퐶(푥 , 푃 ; 휏, 푇)

− 퐸[푚푖푛 {퐶(푥, 푃 ; 0, 휏) + 퐶(푥, 푃 ; 휏, 푇)}] 
(2) 

where 푥∗  =  푎푟푔푚푖푛 퐶(푥 , 푃 ; 0, 푇)  and 휒(푥 ) is the restricted space of actions that can be taken 
between times τ and T — determined by inter-temporal constraints — given that actions x1 were taken 
between times 0 and τ. Although (2) appears convoluted, the intuition for the ESPF is quite simple: it 
is the expected reduction in minimized cost that is achieved when the optimizing agent goes from 
having no foresight of a future parameter change to having perfect foresight of the change. Therefore, 
the ESPF places an upper bound on the VOI; as such, it is the maximum level of resources that should 
ever be allocated to obtaining knowledge of a future parameter change. 
 
5. Scenarios 

5.1.  Carbon Caps 
 We evaluate the effect of four different carbon targets: No Cap, Weak Cap, Medium Cap, and 
Strong Cap (see Table 1). The Medium Cap is based on the trajectory outlined in the Waxman-Markey 
Bill (H.R. 2454, 2009). The Weak Cap and Strong Cap require a 20% lower and a 20% greater 
reduction in CO2 emissions, respectively. The Waxman-Markey trajectory imposes progressively 
stricter carbon targets in 2020, 2030, and 2050. However, in this analysis, we chose to ignore the 2050 
targets since they are too ambitious for MARKAL to meet using its available set of technologies. We 
delay the 2030 targets until 2040 so that the second strengthening of the carbon cap occurs after any 
change in nuclear costs. 
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Table 1. Carbon caps (as % of 2005 CO2 emissions) 
Carbon Target Scenario 2020 2040 

No Cap 100.0% 100.0% 
Weak Cap 86.4% 66.4% 
Medium Cap 83.0% 58.0% 
Strong Cap 79.6% 49.6% 

 
5.2. Nuclear Electricity Costs 

 Nuclear plant construction costs have been extremely difficult to predict. EPA (2006) and EIA 
(1986) discussed how nuclear generation projects can cost nearly twice initial estimates. Nuclear 
energy is an example of a technology that could experience radical technological change in a positive 
or negative direction.    
 We consider three different cases for future nuclear electricity costs (see Table 2). The Base 
case represents the business-as-usual scenario in EPA’s 2008 MARKAL database (i.e., there is no 
radical change in nuclear electricity generation costs). This scenario also serves as a point of 
comparison for the Cost Drop and Cost Rise cases. In the Cost Drop case, the investment cost for 
nuclear plants drops by 50% compared to the Base. This representation of nuclear technological 
improvement was chosen because capital investment represents approximately three-quarters of 
nuclear electricity costs (Cooper, 2009) and a breakthrough would likely entail a lower cost of 
installing new capacity. In the Cost Rise case, both the investment cost and variable costs rise by 50%. 
This reflects the fact that a nuclear disaster would result in more stringent safety regulations that 
would make it more expensive to both construct a new plant and operate existing plants.  
 
Table 2. Future nuclear electricity cost scenarios (all changes occur in 2030) 

2030 Nuclear Generation Cost 
Scenario 

Change in Investment Cost 
(New Plants) 

Change in Variable Costs 
(New and Existing Plants) 

Cost Drop - 50% No Change 
Base No Change No Change 
Cost Rise + 50% + 50% 

 
5.3. Scenarios and Model Runs 

 We evaluated the effects of 12 scenarios, which correspond to all possible combinations of our 
four carbon caps and three nuclear electricity cost events. For each scenario, we execute two model 
runs, one using the two-stage framework and another using the one-stage framework. Since the two-
stage framework captures the unpredictable nature of radical cost change, the two-stage results are 
used to examine how the EGTM would respond to a radical change in nuclear costs in the system’s 
attempt to meet an imposed carbon target. The one-stage results suggest how the EGTM might change 
if perfect foresight of future nuclear costs were available. The expected (over the probabilities of 
nuclear cost events) reduction in minimized discounted system costs when moving from the two-stage 
framework (no foresight) to the one-stage framework (perfect foresight) represents the ESPF on future 
nuclear electricity costs. 
 
6. Results and Discussion: Electricity Generation Technology Mix 
 In this section, we discuss results for the two-stage framework model runs, in which 
technological breakthroughs and plant disasters cannot be anticipated. We show how future nuclear 
electricity production might change due to two effects and evaluate the role of two other important 
generation technologies: (1) coal with carbon capture and sequestration (CCS) and (2) wind.     

6.1.  Nuclear Electricity Production 
 Figure 3 shows total nuclear electricity production in each period for all 12 scenarios. We can 
distinguish two effects on the share of nuclear in the EGTM: (1) the Cap Effect and (2) the Cost 
Effect. The Cap Effect describes the increase in nuclear share as the cap becomes stricter. It is clear 
that for any given nuclear cost case, the nuclear share increases with the strength of the cap. This 
effect makes sense, because nuclear electricity is virtually carbon-free and relative to other low-carbon 
technologies is feasible and cost-effective on a large scale. The Cost Effect describes the decrease in 
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nuclear share as nuclear electricity costs rise. It is clear that for any given carbon cap, the nuclear share 
decreases with nuclear electricity costs. This effect is intuitive, because when nuclear costs rise, other 
competing technologies will be relatively more cost-effective. With less stringent carbon caps in place, 
the Cost Effect largely dominates the Cap Effect. For example, the nuclear share in 2050 is higher 
with No Cap and a Cost Drop than with the Medium Cap and a Cost Rise. However, with more 
stringent carbon caps in place, the Cap Effect largely dominates the Cost Effect. As an example, the 
three highest nuclear shares in 2050 are in the scenarios featuring the Strong Cap; even the Strong Cap 
and Cost Rise scenario features more nuclear generation than any scenario featuring a weaker cap. 
Taken together, the results shown in Figure 3 suggest that moving from weaker to more stringent caps 
inhibits the ability of nuclear generation — and electricity generation in general — to respond to cost 
signals. 
 

Figure 3. Nuclear electricity production for all scenarios. 
 

 
 More generally, these results show that nuclear electricity must play an increasingly important 
role in achieving emissions reductions. Even when the cost of nuclear generation rises, the nuclear 
share must expand, often significantly, in order to reduce emissions to desired levels. This suggests 
that with the current set of technologies, any carbon emissions reduction program that does not rely 
heavily on nuclear generation cannot be justified economically and could only be justified on political 
or public safety grounds.   

6.2. Coal with Carbon Capture and Sequestration (CCS) Electricity Production 
 Figure 4 shows coal with CCS electricity production in each period for all scenarios. In 
general, we found that substituting coal with CCS production for conventional coal production is a 
significant system response to a mid-range cap but does not reduce carbon emissions sufficiently to 
meet the strongest caps. 
 The No Cap scenarios are the only scenarios in which there is still a significant amount of 
conventional coal in the EGTM at the end of the time horizon. Without a carbon reduction 
requirement, there is neither a carbon nor cost incentive to switch conventional coal production to coal 
with CCS, so this transformation of the coal-fired generation subsector does not occur.  

Replacing conventional coal with coal with CCS is a significant system response to a mid-
range carbon target. The large surges in coal with CCS production visible in Figure 4 occur with the 
Weak Cap 2040 target and Medium and Strong Cap 2020 targets. However, with the strongest carbon 
targets – the Medium and Strong Cap 2040 targets – coal with CCS does not reduce emissions enough 
to be an attractive alternative to conventional coal, so production declines. Under the strongest carbon 
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targets, the electricity sector is constrained to virtually zero CO2 emissions because the other sectors in 
the MARKAL model (transportation, industrial, etc.) have comparatively lower potential for 
significant CO2 reductions. In this situation, the only electricity generation technologies feasible on a 
large scale are nuclear and renewables. 
 

Figure 4. Coal with CCS electricity production for all scenarios. 
 

 
 We found that the stronger the carbon cap, the less sensitive coal with CCS production is to 
nuclear costs. With the Weak Cap, the expansion of coal with CCS after 2040 is far more dramatic in 
the Cost Rise case than in the Base or Cost Drop cases. This is an intuitive response to a change in 
relative costs. With the Medium Cap, the persistence of coal with CCS in the later periods 
demonstrates some dependence on nuclear cost. Coal with CCS production declines from its peak only 
slightly in the later periods when nuclear costs rise and declines most rapidly when nuclear costs drop. 
Under the Strong Cap, the coals with CCS trajectories are nearly identical to one another, indicating 
very limited responsiveness to nuclear costs. Again, results suggest that the stronger carbon caps 
inhibit the ability of the EGTM to respond to cost signals.   

6.3. Wind Electricity Production 
 We found that stringent caps make wind the dominant alternative to nuclear and that wind 
generation replaces nuclear generation more as nuclear costs rise. Figure 5 shows wind electricity 
production in each period for all scenarios.  
 Wind electricity production only expands when a carbon cap is imposed. However, once a 
carbon cap is in place, wind generation is determined far more by nuclear costs than by the strength of 
the carbon cap. In Figure 5, aside from the No Cap scenarios in which wind production does not 
expand, the trajectories are clustered by nuclear cost case. The three greatest wind shares are observed 
in the three scenarios featuring a nuclear cost rise. These results suggest that under a carbon cap, 
nuclear and wind are, in economic terms, substitute electricity generation technologies. However, 
given that wind is an intermittent electricity source, as its share grows it should cease to become a 
substitute for more conventional base load electricity technologies. While its generation share is never 
high enough in any of these model runs for its intermittency to be a significant concern, at some larger 
share wind installations would need to be accompanied by complementary additions of base load 
capacity to ensure ability to meet demand during times when wind resources are scarce. 
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Figure 5. Wind electricity production for all scenarios. 
 

 
 
 Wind generation increases most in later periods when the carbon caps are most stringent. 
Given that coal with CCS is no longer a valid option under the strongest carbon caps, wind is the 
dominant alternative to nuclear when the carbon cap is severe. In general, what we observe is that the 
imposition of a mid-range carbon target leads to replacement of conventional coal with coal with CCS 
and some expansion of nuclear. The imposition of a very strict carbon target leads to a drastic 
expansion of nuclear and a late expansion of wind, with wind displacing nuclear from the EGTM more 
as nuclear costs rise. 

6.4. Carbon Intensity of Electricity Production 
Figure 6 shows the aggregate CO2 intensity of electricity production for all scenarios. With a 

carbon cap in place, the CO2 intensity is for the most part dictated exogenously by the cap trajectory. 
However, several features of Figure 6 are worth analyzing.  

 
 Figure 6. Aggregate CO2 intensity of electricity production for all scenarios. 
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First, the No Cap results suggest that the reduction in carbon emissions that would naturally 
occur if nuclear costs drop is immense (i.e., the CO2 intensity of electricity production following a 
nuclear cost drop would fall to roughly half its value in the Base Case). This dramatic decrease in 
carbon intensity is achieved in less than two decades. These findings by themselves imply that it may 
be worth investing significant resources in efforts to decrease the cost of installing nuclear electricity 
capacity. Second, it is possible to see the effects of nuclear cost changes on carbon intensity in the 
period between the two cap introductions, 2020 to 2040. In this period, the Weak Cap and Medium 
Cap trajectories lie lowest with a nuclear cost drop and highest with a nuclear cost rise. This means 
that the decline in carbon intensity that takes place prior to the introduction of the stricter 2040 caps is 
more gradual with lower nuclear costs and more sudden with higher nuclear costs. 
 
7. Results and Discussion: Cap Costs and Expected Savings from Perfect Foresight 
 In this section, we discuss the costs of imposing carbon caps as well as the ESPF on future 
nuclear electricity costs. 

7.1.  Cost of Carbon Caps 
 For a given nuclear electricity cost case, the economic cost of imposing a particular carbon 
cap can be calculated by taking the difference between the minimized discounted system costs with 
that cap and with No Cap. Figure VII displays the additional economic cost that is incurred to meet 
each carbon cap under the alternative nuclear electricity cost cases. 
 The most striking feature of Figure VII is that under all nuclear electricity cost cases, the 
Strong Cap is significantly more costly than the Weak and Medium Caps. Achieving the last 20% of 
additional emissions reduction is far more costly than achieving all prior emissions reduction, 
suggesting that emissions reduction is characterized by sharply rising marginal costs. The dramatically 
higher cost of the Strong Cap is due to the fact that, under the Strong Cap, there is a lack of flexibility 
to choose among technologies based on cost signals. The emissions reduction requirements are so 
stringent that technology choices are almost entirely governed by the push toward zero-carbon 
electricity production. 
 
Figure 7. Cost of imposing CO2 caps under the three nuclear electricity cost cases ($ year 2000). 

 

 
  
  Another notable trend is that the cap costs increase with nuclear electricity costs, which is 
expected. The cost of the Strong Cap is heavily dependent on future nuclear generation costs. For 
example, a Cost Drop would make meeting the Strong Cap roughly $300 billion cheaper, whereas a 
Cost Rise would make meeting the Strong Cap roughly $300 billion more expensive. Therefore, 
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imposing the Strong Cap increases the relative sensitivity of the system to future nuclear electricity 
costs. The greater sensitivity of the Strong Cap cost to nuclear costs is reasonable, because under this 
scenario the system has the least ability to deviate from an EGTM that is dominated by nuclear 
generation. The extremely stringent emissions reduction requirements mean that the only valid 
alternatives to nuclear are renewables like wind and solar. These technologies tend to be relatively 
more expensive (EPA, 2008) and only substitute for nuclear in significant quantities when nuclear 
costs are very high. 

7.2.  Expected Savings from Perfect Foresight 
 We calculated the ESPF by first assuming that the carbon cap is fixed. Applying equation (2), 
the ESPF on future nuclear electricity costs is calculated according to equation (3). 
 퐸푆푃퐹 =  푝 퐶 , + 푝 퐶 , + 푝 퐶 , − 푝 퐶 , + 푝 퐶 , + 푝 퐶 ,  

            =  푝 퐶 , − 퐶 , + 푝 퐶 , − 퐶 , + 푝 퐶 , − 퐶 ,  
            =  푝 퐶 , − 퐶 , + 푝 퐶 , − 퐶 ,  

(3) 

C1,D, C1,B, and C1,R denote the minimized discounted system costs in the one-stage model runs with the 
Cost Drop, Base Case, and Cost Rise, respectively; and where C2,D, C2,B, and C2,R denote the analogous 
quantities for the two-stage model runs. pD, pB, and pR represent the probabilities of the Cost Drop, 
Base Case, and Cost Rise events, respectively. For the final manipulation in equation (3) we note that 
in the Base Case there is no difference between the minimized discounted system costs in the one-
stage and two-stage model runs. 
 We know that the probabilities pD and pR are highly uncertain (Lako et al., 1998). One 
approach to estimating pR would be to examine the frequency of past nuclear plant disasters and adjust 
for changes in the number of operating nuclear reactors. However, this approach relies on a relatively 
short track record of nuclear plant operation and assumes that future nuclear reactors will have the 
same susceptibility to disasters as reactors in the past. Furthermore, there are other potential reasons 
why there would be a future rise in nuclear electricity costs including challenges in the disposal of 
nuclear waste or legislation that preemptively imposes stricter safety regulations. It is even harder to 
estimate pD, since major technological breakthroughs are inherently unpredictable as noted by Bosetti 
and Tavoni (2009).  
 Therefore, rather than estimate pD and pR, we plot the ESPF for all possible combinations of 
pD and pR under each cap (see Figure 8). The feasible domain is characterized by pD + pR ≤ 1 (it 
follows that pB = 1 – pD – pR). 
 
Figure 8. ESPF on future nuclear electricity costs ($ year 2000) under each cap and over various 

beliefs about the probabilities of nuclear cost movements. 
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 Under the Weak Cap, the ESPF is relatively low because the incremental emissions reduction 
requirements are small enough that the system can adjust to them quickly. There is little advantage to 
be gained from knowing future nuclear electricity costs in advance, since the system can wait and 
react without much economic penalty. In other words, the Weak Cap is not strict enough to make 
knowledge of future nuclear electricity costs particularly valuable. 
 Under the Medium Cap, the ESPF is at its highest because (1) emissions reductions are 
significant enough to make knowledge of future nuclear electricity costs valuable, yet (2) relaxed 
enough to allow the system to modify the EGTM based on cost information. As discussed earlier, the 
largest component of nuclear electricity cost is capital cost. Accordingly, the system responds to an 
anticipated cost rise by investing in more nuclear capacity before 2030 when it is relatively cheaper, 
and less after 2030 when it is relatively more expensive. Although variable costs will be higher in the 
later periods, meeting the Medium Cap 2040 target requires a larger share of nuclear and it is more 
cost-effective to build any new plants before the cost rise. 
 The system responds to an anticipated cost drop by delaying some investment in nuclear 
capacity until after the cost drop occurs in 2030 (see Figure 9). If agents have perfect foresight about 
the future cost decrease, more nuclear capacity expansion occurs later to take advantage of lower costs 
after 2030. Greater persistence of natural gas and coal with CCS in the EGTM makes it possible to 
delay investment in new nuclear generation capacity. 
  
Figure 9. EGTM (Thousand GWh) in the Medium Cap, Cost Drop scenario. While there are many other 
technologies in the mix, attention is focused on nuclear (N), natural gas (G), and coal with CCS (C). 

 
 

There are several possible explanations for why the Medium Cap ESPF increases as the 
relative likelihood of a cost drop compared to a cost rise increases. First, the increase in variable 
nuclear electricity costs in the Cost Rise case diminishes the gains achieved by investing in new 
capacity before the cost rise because those plants are then more expensive to operate in later periods. 
Second, it is possible that there is an asymmetry in the cost-effectiveness gap between nuclear and the 
next least or most expensive technology.   
 Under the Strong Cap, the ESPF is at its lowest because emissions reduction requirements are 
so stringent that there is essentially no flexibility to choose among electricity generation technologies 
based on cost signals. For example, even if the system anticipates a nuclear electricity cost drop that 
would make it cheaper to invest in nuclear capacity starting in 2030, waiting to invest in nuclear 
capacity is not an option because the 2020 Strong Cap target requires an early expansion of low-
carbon technologies. In short, the Strong Cap inhibits the ability of the electric power sector to respond 
to cost signals to such a degree that information about future costs has little value. 
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 Our analysis of the ESPF on future nuclear electricity costs has important implications for 
policymakers and the broader research community. First, this analysis illustrates how much more 
demanding the Strong Cap is than the other caps. The Strong Cap significantly limits the ability of the 
electricity sector to respond to cost signals, making it difficult for planners to exploit better 
information about future costs as it arises. Perhaps more importantly, this analysis suggests that 
policymakers should assess the likelihoods of different carbon emissions targets before allocating 
resources to expert elicitations about future nuclear electricity costs. This finding is consistent with 
results reported earlier noting that the possibility of greenhouse gas regulation is the most valuable 
uncertainty (Hu and Hobbs, 2010). We found that a carbon cap similar to the one proposed in the 
Waxman-Markey Bill (the basis for our Medium Cap) may justify a significant investment to develop 
more accurate estimates of future costs. With such a cap, the ESPF is very high across a wide range of 
assumptions about the relative likelihood of future nuclear cost scenarios. 
 
8. Future Research 
 We believe that this study constitutes a step forward in understanding how a radical change in 
nuclear electricity costs might influence efforts to meet various carbon caps. There are a number of 
potentially interesting extensions to this study and a myriad of future research questions to explore in 
the area of radical technological change. 

8.1. Timing of Cost Change 
 In this study, we assumed that future changes in nuclear electricity costs occur in 2030. This 
date was selected because it is close to the midpoint of the time horizon and is surrounded 
symmetrically by the carbon target introduction dates in 2020 and 2040. It would be interesting to 
examine the effects of varying the timing of nuclear electricity cost changes. For example, one could 
evaluate how much cumulative CO2 emissions and minimized discounted system costs might fall if 
nuclear electricity costs drop in 2020 instead of 2030. Results could influence the relative merit of 
policies that promote rapid investment in technologies compared to policies that advocate waiting for 
more information to arise. 

8.2. Sensitivity Analysis of Cost Change Assumptions 
 Given that it is impossible to predict with certainty how much nuclear electricity costs would 
change as a result of some future technological breakthrough or plant disaster, our representations of 
radical cost change were somewhat arbitrary. For that reason, we conducted a preliminary sensitivity 
analysis in which the Cost Rise assumes a doubling of investment cost and variable cost (100% 
change). We found that the trends we observed and conclusions we drew continue to hold with a 
doubling of costs. Having said that, we believe that future work should be devoted to a formal 
sensitivity analysis of these cost change assumptions. For example, it would be useful to assess 
whether our conclusions are robust over the range of future cost changes one might potentially see 
following a technological breakthrough or plant disaster.  

8.3. Incorporation of Demand-Side Effects 
 Energy demand in the standard version of MARKAL used in this study is extremely inelastic. 
As a result, the responses of electricity production and system costs to changes in electricity costs are 
possibly inflated. It is likely that demand-side effects (e.g., energy efficiency, demand response) will 
play an important role in determining the future EGTM, especially with more stringent CO2 targets. 
Clearly, more work should be devoted to incorporating demand-side effects in the MARKAL model. 

8.4. Other Technologies 
 We focused on nuclear electricity because it is already widespread and will likely play a 
significant role in meeting carbon targets in the near future. However, it would be interesting to 
analyze the impact of radical cost changes in other technologies, including coal with CCS or 
renewables. Different technologies have very different capital and variable costs. Nuclear, for one, is 
distinguished by the dominant role of capital costs (i.e., plant construction costs) in the overall cost of 
electricity production. Perhaps technologies with different cost structures will behave differently and 
lead to fundamentally different results. 
 
 
 



International Journal of Energy Economics and Policy, Vol. 3, No. 1, 2013, pp.60-74 

73 

 

8.5. Cost Changes in Multiple Technologies 
 It is likely that the costs of other technologies will change over the time horizon either 
independently or as a result of changes in nuclear costs. Therefore, future research could be devoted to 
evaluating the effects of simultaneous cost changes across multiple technologies.   
9. Conclusion 
 In this analysis, we considered four carbon caps and three nuclear electricity cost events. We 
developed a two-stage MARKAL framework to reflect the unpredictable nature of radical cost 
changes and evaluated the response of the electricity generation sector to these changes under the 
alternative carbon caps. Finally, we determined the cost of imposing each carbon cap with different 
nuclear cost scenarios and calculated the ESPF as a means of constraining the VOI on future nuclear 
electricity costs. 
 We found that, regardless of what happens to its costs, nuclear electricity production must 
expand in order to significantly reduce CO2 emissions. This suggests that any ambitious carbon 
emissions reduction program that does not rely heavily on nuclear electricity cannot be justified 
economically and can only be justified on political or public safety grounds. The Cost Effect describes 
the decrease in the nuclear share as its costs rise. The Cap Effect describes the increase in nuclear 
share as the carbon cap gets more stringent. Under weaker carbon caps, the Cost Effect dominates and 
the nuclear share is more responsive to costs. Under stronger carbon caps, the Cap Effect dominates 
and the nuclear share is less responsive to costs. Replacing conventional coal with coal with CCS is a 
valid and relatively cost-effective alternative to nuclear under mid-range carbon caps, but under the 
strongest variants of the cap even coal with CCS is too carbon-intensive to meet emissions reduction 
requirements. Under the strongest caps, the only valid large-scale alternative to nuclear is wind. The 
share of wind generation is more sensitive to nuclear costs than to the severity of the carbon cap. Wind 
displaces nuclear from the EGTM more as nuclear costs rise; in economic terms, wind and nuclear 
electricity generation are substitute technologies in the presence of a carbon cap. The Strong Cap is 
significantly more costly than the Weak and Medium Caps. The cost of imposing the Strong Cap is 
very high because its emissions reduction requirements are so stringent that the feasible set of EGTMs 
is constrained to such a degree that there is virtually no flexibility to respond to cost signals in 
choosing among technologies. The ESPF on future nuclear electricity costs is greatest under the 
Medium Cap. The Weak Cap is not stringent enough to make information on future costs particularly 
valuable and the Strong Cap is so restrictive that it makes it nearly impossible to exploit better 
information on future costs. The Medium Cap strikes a balance between strength and flexibility, which 
results in a high ESPF across a wide range of probability distributions describing the likelihoods of 
nuclear cost events. These findings suggest that policymakers should consider the likelihoods of 
carbon targets before allocating financial resources to expert elicitations about future nuclear 
electricity costs.  
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