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ABSTRACT

This paper examines the impact of solar and wind prices on the Australian electricity spot and options markets for the period January 2006-March 
2018. Using a vector autoregression analysis, we examine both the direction of influence and influence absorption through Granger causality testing, 
the impulse response function, and forecast error variance decompositions. We identify a unidirectional Granger causal relationship between the 
solar and wind electricity prices and the spot prices in New South Wales, Queensland, Victoria, and South Australia. The forecast results suggest that 
the solar and wind electricity prices reduce the spot and options electricity market prices. These results are important for energy policymakers and 
government organizations that support renewables, as their use not only decreases the wholesale spot prices, but also encourages initiatives to explore 
and switch to alternative energy sources, which tend to be more cost effective and environmentally friendly.

Keywords: Electricity Pricing, Renewable Energy, Vector Autoregression Model 
JEL Classifications: C32, Q41, Q42

1. INTRODUCTION

Electricity represents one of the most important resources of every 
national economy, as it plays an essential role in both economic 
production and life more generally. In recent years, the share 
of solar and wind power has increased worldwide, which has 
resulted in these renewable power sources having an increasing 
impact on electricity system prices and costs. The direct effect of 
solar and wind power on the electricity spot and options markets 
is typically adverse, since renewables allow for the generation of 
power at very low or even zero marginal cost and hence displace 
more costly means of generation. Solar and wind power can 
also indirectly decrease the electricity spot and options prices by 
lowering the power of the market in systems in which generators 
bid strategically.

Electricity prices are among the most important contemporary policy 
issues in Australia, and they represent a critical component of current 
discussions concerning energy and climate change policies. Several 
attempts to move forward with energy and climate change policies 
have been stymied by concerns about potential additional increases 
in electricity prices. Within this policy debate in Australia, renewable 
electricity generation is considered to be a fundamental factor 
influencing electricity prices. Due to the increasing penetration 
of wind and solar power generation in Australia coinciding with 
increasing wholesale and retail electricity prices, there is now a 
widely held belief that the wholesale electricity price increases are 
related to the increased penetration of renewables.

The aim of the present study is to investigate the nature and 
influence of solar and wind prices on the electricity spot and 
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options markets for a number of Australian states. The study will 
conducted a multivariate analysis to examine the causal nature of 
the market, particularly the relationship that may exist between 
solar and wind pricing and the electricity spot and options prices in 
each of the investigated states. Increased information concerning 
the dynamics of the electricity, solar, and wind prices will allow 
for a better understanding of the flow of pricing information among 
the markets. To achieve this, a vector autoregression (VAR) model 
will be used to examine the extent of the dynamic interactions that 
occur between the solar and wind prices and the electricity spot 
and options valuations.

Moreover, Granger causality (GC) tests will be applied to 
investigate the Granger-type causal linkages between solar 
and wind pricing and the spot and options electricity markets. 
Additionally, the use of the impulse response analysis (IRA) 
will allow for the measurement of the duration and speed of 
the interactions that exist between solar and wind pricing and 
the electricity spot and options markets. Further, forecast error 
variance decomposition (FEVD) will also be applied so as to 
determine the extent to which the forecast error variances of the 
solar, wind, spot, and options prices are influenced by one another.

The present study considers quantitative data regarding the electricity 
markets in five Australian states, namely New South Wales (NSW), 
Queensland (QLD), South Australia (SA), Victoria (VIC), and 
Tasmania (TAS). The time series data concerning each state involves 
four variables, that is, the wind, solar, spot, and options prices (as 
expressed in Australian dollars per megawatt hour [$/MWh]). In this 
study, the dataset consists of monthly observations, while the sample 
covers the period from January 2006 to March 2018.

This study makes two significant contributions to the literature. 
First, it helps to explain the relationships between the pricing of 
renewables, such as solar and wind power, and the electricity 
markets. The effects of solar and wind power on electricity prices 
are of great concern, not only to participants in the energy market, 
for example, risk managers, who must have a clear understanding 
of price dynamics, but also to policymakers, who need to adjust the 
market design based on new challenges so as to improve market 
efficiency and, thus, social welfare. Second, the study adds to the 
limited body of literature analysing the relationships between solar 
and wind prices and the spot and options electricity markets using 
multivariate models such as VAR. This study will fill a gap in the 
prior literature by disentangling the differential effects of solar and 
wind prices on the Australian spot and options electricity markets.

The remainder of this paper is organized as follows. Section 2 
introduces the relevant literature and situates the present paper in 
relation to it. Section 3 outlines the methodology employed in the 
study, while section 4 describes the data sources. Section 5 presents 
the empirical results, while section 6 discusses the findings and 
offers a conclusion to the study.

2. LITERATURE REVIEW

The relationships between green energy alternatives and the 
electricity markets have been studied in many different countries 

and areas (Badyda and Dylik, 2017; Csereklyei et al., 2019; Forrest 
and MacGill, 2013; Gürtler and Paulsen, 2018; Odeh and Watts, 
2019; Sorknæs et al., 2019; Winkler et al., 2016; Worthington 
and Higgs, 2017). Further, the number of studies evaluating the 
relationships between green alternatives, such as wind and solar 
power, and the wholesale electricity prices in deregulated or 
liberalized electricity markets has grown steadily in recent years. 
These prior studies have mainly been based on econometric models 
using real historical data (Würzburg et al., 2013).

The investigation of the associations and linear relationships 
between the proportion of renewable energy sources within the 
generation mix and the wholesale price of electricity began with 
the seminal work of Jensen and Skytte (2003). Their findings 
showed that a greater share of renewable energy within the total 
electricity generation mix can result in a decrease in the wholesale 
electricity price. In a European case study, Clò et al. (2015) applied 
a multivariate regression model to investigate the impact of solar 
and wind power generation on electricity market prices in the 
Italian power market using hourly data from January 01, 2005 
to October 31, 2013. Their major conclusion was that one GWh 
generated from solar and wind sources (hourly average) reduces 
prices by 2.3€/MWh and 4.2€/MWh, respectively.

With regard to the specific case of the Australian electricity market, 
Forrest and MacGill (2013) investigated the impact of wind power 
generation on electricity prices in the Australian market using 
half-hourly data from March 01, 2009 to February 28, 2011. They 
applied econometric analysis techniques to estimate the impact of 
the wind output on prices based on empirical data. Their results 
showed that wind power caused a drop in the spot market price to 
$8.05/MWh for SA and $2.73/MWh for VIC. Yet, they also showed 
how a greater drop in the spot market energy price, as caused by the 
higher integration of wind power, actually limited its development.

Worthington and Higgs (2017) examined the impact of the 
generation mix, encompassing both fossil fuels (black and 
brown coal and natural gas) and renewables (hydropower and 
wind power), on the daily spot electricity prices in the Australian 
National Energy Market (ANEM) from January 01, 2006 to 
September 06, 2012. Using least squares and quantile regressions, 
they evaluated the emergent effects of government policy and 
industry developments regarding the generation choice on the 
wholesale electricity prices. Their results showed that changing 
the generation mix used for the production of electricity exerts a 
strong influence on wholesale prices.

Recently, Csereklyei et al. (2019) used autoregressive distributed 
lag (ARDL) models to decompose the merit-order effect of 
wind and utility-scale solar photovoltaic (PV) generation on the 
wholesale electricity prices in Australia from 2010 to 2018. Their 
results showed that an extra GW of dispatched wind capacity 
decreases the wholesale electricity price by 11 AUD/MWh at the 
time of generation, while an extra GW of dispatched solar capacity 
results in a decrease of 14 AUD/MWh.

A few studies have considered Granger causal modelling in 
relation to the electricity markets and solar and wind power (Ata, 
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2018; Kyritsis et al., 2017). For example, Kyritsis et al. (2017) 
investigated the GC from solar power generation, wind power 
generation, and the total electricity load to the day-ahead electricity 
prices in the German electricity market. They found that solar power 
generation, wind power generation, and the total electricity load all 
Granger-cause the electricity prices at the 1% significance level.

Ata (2018) estimated the causal relationship between renewable 
energy consumption and electricity prices using data from 1990 to 
2012 for three case study countries, namely the United Kingdom, 
Turkey, and Nigeria. The study found that (a) there is unidirectional 
causality running from electricity prices to renewable energy 
consumption for Turkey; (b) there is a unidirectional causal link 
between renewable energy consumption and electricity prices for 
Nigeria; and (c) there is bidirectional causality in the relationship 
between renewable energy consumption and electricity prices for 
the United Kingdom.

Moreover, several studies have examined the relationships between 
different energy prices (i.e., crude oil prices, coal prices, uranium 
prices, and natural gas prices) and the electricity markets (Bernal 
et al., 2019; Ferkingstad et al., 2011; Furio and Poblacion, 2018; 
Mjelde and Bessler, 2009). For example, Bernal et al. (2019) 
analysed the relationships between Mexican electricity prices and 
the fossil fuel, crude oil, natural gas, and coal prices for the period 
from January 2006 to January 2016. They used an unrestricted vector 
autoregressive model and reported that, in the short term, the crude 
oil, natural gas, and coal prices have a significant positive impact on 
electricity prices. In the long term, they found that the crude oil and 
natural gas prices also have a significant positive impact on electricity 
prices as well as on commercial and industrial electricity rates.

This section has provided an overview of the major studies to 
have examined the nature and effects of green alternatives on 
the electricity markets and, in particular, on the spot and options 
pricing. In the main, the previous studies have shown solar and wind 
generation, rather than pricing, to be generally and consistently 
associated with reduced electricity prices. Work on the effects of 
pricing remains to be done in terms of the spot and options prices. 
Additionally, the above review showed that multivariate models 
can be used to decipher the dynamic relationships that may exist 
between the wholesale electricity spot prices and the prices of 
renewables based on the fact that the fuel sources for electricity 
generation have previously been studied using the VAR, ARDL, 
and vector error correction model (VECM) approaches.

3. METHODOLOGY

The present study examines the nature and influence of solar and 
wind prices in relation to the electricity spot and options markets 
of the ANEM within the context of a VAR analysis (Sims, 1980). 
As previously stated, the study investigates the extent, speed, 
and duration of the interactions among the markets based on GC, 
impulse response, and variance decomposition analyses.

3.1. VAR Model
The VAR model is a standard tool for econometrics and 
multivariate time series analysis. The endogenous variables, xt, 

and the exogenous variables, zt, are observed as random vectors 
depending on the (time) = 1, 2,…. The basic idea behind the VAR 
model is that the endogenous variables depend linearly on their k 
previous values, as well as on the current values of the exogenous 
variables, so that
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Where Mτ and γ are the coefficient matrices of the sizes n × n and 
n × d, respectively, n is the number of endogenous variables, and 
d is the number of exogenous variables. Further, μ is a constant 
vector and et is a vector of residuals (innovations).

All the variables must have the same order of integration. If all the 
variables are stationary, I(0), we have the standard case of a VAR 
model, but if all the variables are non-stationary, I(d), d > 1, we 
have two possibilities. First, if the variables are not cointegrated, 
then they must be differenced d times in order to obtain a VAR. 
Second, if the variables are cointegrated, a VECM may be used.

3.2. Stationarity and Stability
We assume two basic conditions regarding the data, X, and its 
associated VAR[p] model, namely stationarity and stability. 
A  stochastic process X is weakly stationary (or wide-sense 
stationary [WSS]) if its first and second moments (mean and 
covariance) do not change over time. In other words, E (xt) = μ 
for all t and
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For all t and h=0, 1, 2,… where E denotes the expected value. 
A  VAR[p] process is considered to be stable if its reverse 
characteristic polynomial has no roots in or on the complex unit 
circle. Formally, xt is stable if
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Equivalently, xt is stable if all the eigenvalues of A have a modulus 
of <1 (Lütkepohl, 2006). A  stable process is one that will not 
diverge to infinity (“blow up”). It is important to recognize that 
stability implies stationarity; thus, it is sufficient to test for stability 
when seeking to ensure that a VAR[p] process is both stable and 
stationary.

3.3. GC Analysis
A key element of employing a VAR model concerns its use in 
forecasting. Its structure provides information regarding the 
ability of variables or variable groups to forecast other variables. 
Granger (1969) introduced this intuitive notion of a variable’s 
ability to forecast. If a Y1 variable or variable group was to prove 
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instrumental in another Y2 variable’s or variable group’s prediction, 
then the Y1 variable Granger-causes the Y2 variable. In the opposite 
case, Y1 does not Granger-cause Y2 if, for all s > 0, the mean squared 
error of a forecast of Y2,t based on (Y2,t, Y2,t−1) is the same as the 
mean squared error of a forecast of Y2,t+s based on (Y2,t, Y2,t−1) and 
(Y1,t, Y2,t−1). It is worth noting that Granger’s causality notion only 
suggests the ability to forecast.

A VAR (p) bivariate model for Yt = (Y1,t, Y2,t)′ sees the failure of 
Y2 to Granger-cause Y1, given that all the p VAR matrices of the 
coefficients are lower triangular. The Wald statistic can test the 
p linear restrictions on the coefficients. The coefficient matrices 
of the VAR are diagonal in the event that both Y2 and Y1 fail to 
Granger-cause each other. It is important to note that GC is rather 
useful in the field of finance and that it continues to be extensively 
used because it shows the bidirectional as well as unidirectional 
causality of the time series data. In essence, how and in what ways 
the other variables contribute to the prediction process of a given 
variable – that is, which variables (or which information in terms 
of the variables) are crucial for the prediction process – contribute 
significantly to the forecasting of a given variable.

3.4. IRA Analysis
The IRA is considered in terms of the standard deviation shocks 
that occur during the studied period. It shows how the variables 
respond to those shocks and how their responses affect the other 
variables. In this study, the IRA measures the durations and effects 
of the spot electricity price, the options electricity price, the solar 
price, and the wind price from one variable to another by tracing 
the effects of a shock to one endogenous variable on the other 
variables within the VAR structure.

The processes of vector moving averages (VMA) can be used to 
represent the VAR (p) model as follows:
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Where the coefficient sets ζ ζij ij
ss( ) =  represent the impulse 

response functions and where i, j = 1,…, T.

3.5. FEVD Analysis
In econometrics and other applications of the multivariate time 
series analysis, a variance decomposition or FEVD is used 
to aid in the interpretation of a VAR model once it has been 
fitted (Lütkepohl, 2005). Variance decomposition concerns the 
decomposition of the variance in a given dataset so as to show the 
changes in a variable that are brought about by its own innovation 
or due to some other variable. To examine how the spot electricity 

price, options electricity price, solar price, and wind price variable 
affects the other variables, a variance decomposition analysis 
within the context of a VAR will be conducted. In general, we 
consider a k-dimension vector autoregressive model denoted as 
VAR (p):

	 Y Yt
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Where εt is an independent and identical distributed error term 
with a zero mean and the covariance matrix Σ. If we assume 
weak stationary, Yt will obtain a moving average order that can 
be represented as,
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Suitable restrictions are available such that Σ can be represented 
as PP, while εt = P−1 εt is the orthogonalzed error with the identity 
covariance matrix.

4. DATA SOURCES

In the present study, the dataset consists of monthly observations, 
while the sample covers the period from January 2006 to March 
2018. The variables included in the estimations are the spot, 
options, solar, and wind electricity prices (as expressed in $/MWh) 
from five Australian electricity markets, namely the NSW, QLD, 
SA, TAS, and VIC markets (save for the options electricity prices 
in the case of TAS). The choice of study period was constrained 
by the availability of time series data concerning the solar and 
wind electricity prices.

The time series data concerning the spot electricity prices were 
collected on a monthly basis from the Australian Energy Market 
Operator (AEMO). The AEMO collates and reports the average 
daily, monthly, and annual observations for each price for the 
five market regions within the ANEM. The data concerning the 
options prices (closing prices) were collected from among the ASX 
Energy daily market data and then converted into monthly terms 
(January 2006 to March 2018). All the utilized data include only 
those options contracts with non-zero trading volumes.

The MAC Global Solar Energy Index and the ISE Global Wind 
Energy Index were used as the solar and wind electricity price 
proxy variables, respectively. Time series data concerning the 
two indices were collected on a monthly basis from Bloomberg.

5. RESULTS

5.1. Vector Autoregressive System Stationarity and 
Stability
One formal test of the stability of a VAR involves examining the 
(inverse) roots of the autoregressive characteristic polynomial 
of the VAR. When all the inverse roots are within a unit circle 
(i.e., all the eigenvalues have a modulus of <1), then the VAR is 
said to be stable (Lütkepohl, 2006). As establishing the stability 
of a time series implies that the series is also stationary, the 
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stability condition is sometimes referred to in the literature as 
the stationarity condition (Kammerdiner, 2008). However, it is 
important to remember that the two conditions are not equivalent. 
In fact, although a stable vector autoregressive series is always 
stationary, the reverse is not true, that is, an unstable time series 
is not necessarily non-stationary.

As shown in Table 1, the specified models were stable (i.e. all 
the VAR values were <1). This means that the modulus latent 
root was both <1 and a non-singular polynomial with a non-zero 
determinant. Further, it means that the system was a stationary 
stochastic process that can reach convergence.

5.2. Vector Autoregressive Order Selection Criteria 
(Lag Selection)
Prior to estimating the VAR, the optimum lag is determined based 
on the results of the Schwarz’s Bayesian information criterion 
(SBIC) test. Selecting the optimal lag before constructing the 
VAR is important, as a trade-off is involved in the selection of 
the number of lags. According to Kireyev (2000), excessively 
short lags may fail to capture a system’s dynamics, thereby 
leading to the omission of certain variables, coefficient biases, 
and serial correlation-based errors, while lag lengths that are 
excessively long cause the rapid loss of the degree of freedom 
and over-parameterisation. In other words, the estimation of an 
appropriate lag length avoids the over-parameterisation of the 
model. The order of the VAR model was determined according 
to the information criteria: Akaike information criterion (AIC), 
Schwarz information criterion (SC), sequential modified likelihood 

ratio test statistic (LR), and final prediction error (FPE) (Lütkepohl, 
2005). The number of lags that minimized the value of each of 
the above-mentioned criteria was chosen as the appropriate VAR 
order. Thus, a lag order selection test was performed and, based 
on several of the four criteria, a lag order of two was indicated. 
The lag length selection table is presented in Table 2, which shows 
a significant lag length (two) for the NSW, QLD, VIC, SA, and 
TAS set variables.

5.3. Testing the Adequacy of the Vector Autoregressive 
Model
The Lagrange multiplier test is used to check for the presence of 
autocorrelation within the residuals. The null hypothesis is that there 
is no autocorrelation up to the specified lag for the variables, while 
the alternative hypothesis is that there is autocorrelation up to the 
specified lag for the variables. The Lagrange multiplier test results, 
as presented in Table 3, show that all the p-values are higher than 
the critical value (5%). Based on this finding, the null hypothesis 
of no serial autocorrelation within the residuals cannot be rejected 
for lag order h, which in this case is lag two. The VAR of the spot, 
options, solar, and wind electricity prices and the combined trait 
models can be considered both representative and stable.

5.4. Vector Autoregressive Estimation Model
Table 4 presents the results of the VAR analysis. As shown in 
the table, some of the variables used in the VAR framework 
have significant coefficients. Hence, significant interdependence 
exists among certain of the variables, that is, either as a variable 
influencing another variable or as a variable that is influenced.

Table 1: VAR stability condition roots of characteristics polynomials
Root Modulus Root Modulus

NSW QLD
0.966227 0.966227 0.958898−0.075513i 0.961866
0.926792−0.072548i 0.929627 0.958898+0.075513i 0.961866
0.926792+0.072548i 0.929627 0.959900 0.959900
0.505895 0.505895 0.397502−0.132467i 0.418993
0.261254 0.261254 0.397502+0.132467i 0.418993
0.049756−0.115689i 0.125934 −0.092651−0.152693i 0.178604
0.049756+0.115689i 0.125934 −0.092651+0.152693i 0.178604
0.008560 0.008560 0.128222 0.128222

VIC SA
0.964308 0.964308 0.968637 0.968637
0.940158−0.070187i 0.942774 0.903933−0.020487i  0.904165
0.940158+0.070187i 0.942774 0.903933+0.020487i 0.904165
0.608949 0.608949 0.411944 0.411944
0.421076 0.421076 0.262662−0.206804i 0.334304
0.231144 0.231144 0.262662+0.206804i 0.334304
−0.229707 0.229707 −0.183765 0.183765
−0.029544 0.029544 −0.081277 0.081277

TAS
0.965889−0.013243i 0.965980
0.965889+0.013243i 0.965980
0.526198 0.526198
0.320651 0.320651
−0.078019 0.078019
0.064342 0.064342
0.965889−0.013243i 0.965980
0.965889+0.013243i 0.965980
All the eigenvalues lie inside the unit circle. VAR satisfies the stability condition. NSW: New South Wales, QLD: Queensland, SA: South Australia, VIC: Victoria, TAS: Tasmania, 
VAR: Vector autoregression 
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The VAR results show that the spot price lag one had a significant 
positive impact on the spot price in each state, while lag two was 
not significant because the probability value was more than the 
critical value of 5%. In addition, the results suggest that the options 
price (lags 1 and 2) had strong positive and negative effects due 
to the lags of the options prices in NSW, QLD, VIC, and SA. 
Further, the results indicate that the solar and wind prices strongly 
impacted each other in both the positive and negative directions.

Moreover, the VAR results suggest that the independent variable, 
that is, the options price (lags 1 and 2), is a significant variable (<5% 

and 10%) in terms of explaining the dependent variable, namely 
the spot price, in NSW and QLD. Further, the wind price (lag 2) 
variable is statistically significant at the 5% level and, therefore, it 
may be able to explain the options prices in NSW, VIC, and SA.

5.5. Forecasting Performance
A key advantage of the VAR model concerns its potential for use in 
forecasting. Its structure provides information regarding the ability 
of the variables or variable groups to forecast other variables. The 
VAR has a multivariate advantage, as the developed forecasts can 
be made conditional on the potential future trends in the other 
given variables. This study forecasts the spot, options, solar, and 
wind electricity prices using a VAR model with a 2-year horizon 
(i.e., April 2018 to March 2020).

Using Equations 7, 8, 9, and 10, the forecast results for the spot, 
options, solar, and wind electricity prices in NSW (Figure 1a) 
show negative growth rates of around 10.87%, 19.78%, 18.93%, 
and 26.50%, respectively. The results also suggest that the future 
values of the spot, options, solar, and wind electricity prices 
in QLD can be predicted using Equations 11, 12, 13, and 14. 
Figure 1b shows that the electricity spot, options, and wind prices 
are expected to decrease by an average of 11.21%, 4.25%, and 
24.84%, respectively, over the next 2 years. However, the forecast 
results concerning the solar electricity price in QLD show positive 
growth rates of around 51.31%.

Table 3: Lagrange‑multiplier test
States Lag Chi‑square Prob.>Chi‑square 
NSW 1 19.53 0.24

2 23.01 0.11
QLD 1 26.05 0.53

2 30.68 0.14
VIC 1 11.6 0.77

2 21.2 0.17
SA 1 18.85 0.27

2 23.04 0.11
TAS 1 5.23 0.81

2 9.97 0.35
Null hypothesis: no autocorrelation at lag order. NSW: New South Wales, 
QLD: Queensland, SA: South Australia, VIC: Victoria, TAS: Tasmania, VAR: Vector 
autoregression 

Table 2: Results of the criteria for spot, option, solar and wind electricity prices
Lag LL LR FPE AIC SC

NSW
0 −2824.686 1.79e+12 39.56204 39.64491
1 −2178.285 1247.598 2.65e+08 30.74525 31.15963*
2 −2148.794 55.26972* 2.19e+08* 30.55656* 31.30245
3 −2138.118 19.41074 2.37e+08 30.63103 31.70842
4 −2129.676 14.87799 2.64e+08 30.73672 32.14563

QLD
0 −2868.387 3.29e+12 40.17324 40.25612
1 −2202.636 1284.945 3.72e+08 31.08582 31.50020*
2 −2183.352 36.14037 3.56e+08* 31.03989* 31.78578
3 −2167.411 28.98416* 3.56e+08 31.04071 32.11811
4 −2160.194 12.71708 4.04e+08 31.16356 32.57246

VIC
0 −2822.787 1.74e+12 39.53548 39.61836
1 −2158.431 1282.253 2.00e+08 30.46756 30.88195*
2 −2130.895 51.60590* 1.71e+08* 30.30622* 31.05211
3 −2121.002 17.98777 1.86e+08 30.39163 31.46903
4 −2111.933 15.98063 2.06e+08 30.48858 31.89748

SA
0 −2871.576 4.57e+12 40.50108 40.58434
1 −2262.410 1175.434 1.07e+09 32.14661 32.56293*
2 −2245.761 31.18747* 1.07e+09* 32.13747* 32.88684
3 −2235.358 18.90021 1.15e+09 32.21631 33.29873
4 −2226.583 15.44918 1.28e+09 32.31807 33.73354

TAS
0 −2475.430 2.27e+11 34.66335 34.72551
1 −2009.979 904.8630 3.84e+08 28.27942 28.52805*
2 −1999.274 20.36195* 3.75e+08* 28.25557* 28.69068
3 −1995.306 7.380546 4.02e+08 28.32596 28.94753
4 −1987.565 14.07406 4.10e+08 28.34357 29.15162
*indicates lag order selected by the criterion, AIC: Akaike information criterion, SC: Schwarz information criterion, LR: Likelihood ratio, FPE: Final prediction error, VAR: Vector 
autoregression 
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Relying on Equations 15, 16, 17, and 18, Figure 2c shows the 
spot, options, solar, and wind electricity price forecasts for VIC 
from April 2018 to March 2020. The results suggest decreasing 
growth rates of around 23.67% for the spot price, 13.51% for the 
options price, and 23.55% for the wind price. Further, Figure 2d 
shows predicted decreases in the spot, options, and solar electricity 
prices in SA of around 43%, 8.84%, and 11.05%, respectively, 
using Equations 19, 20, and 21. Additionally, using Equation 23, 
Figure 2e shows that the spot electricity price in TAS is predicted 
to decrease by 8.27% in March 2020 when compared to the prices 
in March 2018.

The equations for NSW are:
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The equations for QLD are:

Spot Spot Spot Option
Opti

t t t t= + + +
−

− − −18 01 0 30 0 03 5 97

6 15

1 2 1
. . . .

. oon Solar Solar
Wind Wind u

t t t

t t

− − −

− −

− +
+ − +

2 1 2

1 2

0 07 0 03

0 26 0 06

. .

. . tt
� (11)

Table 4: VAR coefficients
Region Variable Spot Option Solar Wind

Coef. P‑value Coef. P‑value Coef. P‑value Coef. P‑value
NSW Spot (−1) 0.249 0.002 0.002 0.440 0.132 0.634 0.081 0.045

Spot (−2) 0.017 0.834 0.002 0.393 −0.070 0.800 −0.018 0.660
Option (−1) 6.943 0.001 1.277 0.000 13.160 0.070 0.690 0.513
Option (−2) −6.746 0.001 −0.388 0.000 −13.543 0.051 −1.496 0.138
Solar (−1) −0.021 0.531 0.000 0.940 0.711 0.000 −0.053 0.002
Solar (−2) −0.024 0.487 −0.001 0.352 0.233 0.054 0.044 0.013
Wind (−1) 0.079 0.725 −0.009 0.252 2.465 0.002 1.459 0.000
Wind (−2) 0.131 0.131 0.017 0.053 −2.290 0.006 −0.434 0.000
C 14.285 0.026 0.110 0.639 −15.946 0.475 4.093 0.208

QLD Spot (−1) 0.304 0.000 0.001 0.639 0.139 0.542 0.056 0.092
Spot (−2) 0.036 0.658 0.001 0.743 −0.014 0.951 0.024 0.481
Option (−1) 5.973 0.024 1.198 0.000 9.554 0.201 −0.529 0.629
Option (−2) −6.153 0.018 −0.271 0.001 −7.617 0.299 −0.106 0.921
Solar (−1) −0.079 0.060 0.001 0.461 0.679 0.000 −0.049 0.005
Solar (−2) 0.033 0.432 −0.001 0.258 0.278 0.020 0.047 0.007
Wind (−1) 0.265 0.352 −0.010 0.270 2.873 0.000 1.434 0.000
Wind (−2) −0.064 0.824 0.014 0.109 −2.767 0.001 −0.442 0.000
C 18.016 0.043 0.087 0.750 −35.163 0.162 4.344 0.238

VIC Spot (−1) 0.363 0.000 0.004 0.233 −0.378 0.270 −0.013 0.796
Spot (−2) 0.150 0.067 0.000 0.975 0.317 0.355 0.046 0.362
Option (−1) −0.953 0.561 1.340 0.000 10.196 0.137 0.322 0.751
Option (−2) 1.145 0.475 −0.426 0.000 −9.654 0.149 −0.959 0.333
Solar (−1) −0.031 0.258 0.001 0.443 0.697 0.000 −0.050 0.004
Solar (−2) 0.000 0.991 −0.002 0.145 0.246 0.039 0.041 0.021
Wind (−1) 0.255 0.172 −0.016 0.067 2.653 0.001 1.446 0.000
Wind (−2) −0.098 0.607 0.021 0.018 −2.467 0.002 −0.427 0.000
C 5.537 0.336 0.261 0.322 −20.864 0.386 5.650 0.113

SA Spot (−1) 0.204 0.016 0.003 0.354 −0.127 0.505 0.007 0.813
Spot (−2) 0.041 0.624 0.002 0.481 0.177 0.348 0.035 0.203
Option (−1) −1.487 0.544 1.094 0.000 3.435 0.533 −0.394 0.628
Option (−2) 2.771 0.226 −0.254 0.001 −4.086 0.428 −0.250 0.743
Solar (−1) −0.094 0.070 0.000 0.874 0.678 0.000 −0.055 0.002
Solar (−2) 0.062 0.259 −0.003 0.086 0.251 0.043 0.040 0.029
Wind (−1) 0.397 0.250 −0.013 0.257 2.613 0.001 1.472 0.000
Wind (−2) −0.209 0.573 0.029 0.016 −2.352 0.005 −0.426 0.001

  C 9.974 0.277 0.054 0.857 −21.131 0.306 2.195 0.472
TAS Spot (−1) 0.560 0.000 −0.180 0.494 0.003 0.933

Spot (−2) 0.012 0.890 −0.132 0.620 0.006 0.881
Solar (−1) −0.021 0.564 0.654 0.000 −0.059 0.001
Solar (−2) −0.013 0.716 0.256 0.023 0.054 0.001
Wind (−1) 0.138 0.548 2.832 0.000 1.551 0.000
Wind (−2) 0.030 0.897 −2.464 0.001 −0.550 0.000
C 6.388 0.310 −20.255 0.310 1.077 0.720

No options electricity prices in the case of TAS. NSW: New South Wales, QLD: Queensland, SA: South Australia, VIC: Victoria, TAS: Tasmania, VAR: Vector autoregression 
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The equations for VIC are:
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The equations for SA are:
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Figure 1: Vector autoregression (VAR) time-series forecasts (a) New South Wales VAR time-series forecasts, (b) Queensland VAR time-series 
forecasts, (c) Victoria VAR time-series forecasts, (d) South Australia VAR time-series forecasts, (e) Tasmania VAR time-series forecasts
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The equations for TAS are:
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5.6. GC Test Results
An additional advantage offered by the VAR model concerns its 
ability to perform GC testing in order to examine the directions 
of causality among the variables. The GC test is used to check the 
lead lag, or Granger causal relationship, between the variables. 
If a variable, for example, X is found to be helpful with regard 
to predicting another variable, for example, Y, then X is said to 
Granger-cause Y. The methodological structure of the model 
allows for GC tests to be conducted so as to indicate whether 
there is one- or two-way GC between the four variables, namely 
the spot, options, solar, and wind electricity prices.

The GC tests were performed to test the VAR model of the ANEM, 
as well as to determine whether or not each variable plays a 

significant role in each of the equations. The results of the short-
run GC tests are presented in Table 5.

In the case of NSW, the GC tests show that a significant Granger 
causal effect exists from the options, solar, and wind electricity 
prices to the spot price at a significance level of <1%. In addition, 
unidirectional GC from the solar and wind electricity prices to the 
options price exists at a significance level of <5%. Further, the 
results suggest that there is significant GC between the solar and 
wind prices, whereby each variable Granger-causes the other at 
less than the 1% significance level.

In terms of QLD, the GC tests show that there is unidirectional 
GC running from the solar and wind electricity prices to the 
spot electricity price at the 1% (high) level of significance. 
Similarly, there is unidirectional short-run GC running from the 
options price to the spot electricity price at the 10% (low) level 
of significance. Moreover, bidirectional GC exists between the 
options and wind prices at the 5% (medium) level of significance 
and from the options price to the wind price at the 10% (low) 
level of significance.

With regard to the situation in VIC, no causality is noted from the 
options electricity price to the spot electricity price. The results 
also suggest that there is one-way GC from the solar price to the 
spot electricity price (at the 1% significance level) and the options 
electricity price (at the 10% significance level). However, the GC 
tests show that there is a two-way Granger causal effect from 

Figure 2: Impulse response graphs
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the wind price to the options electricity price at less than the 5% 
significance level. Further, there is a one-way Granger causal 
effect from the wind price to the spot electricity price at the 1% 
significance level.

In relation to SA, the GC tests show that the solar and wind 
prices Granger-cause the spot electricity price at less than the 
10% significance level; however, the reverse is not true for both 
variables. The results also show that the GC was at the 1% (high) 
level of significance from the solar price to the options electricity 
price. In addition, the GC between the wind price and the options 
electricity price was significant in both directions at the 1% (high) 
significance level from the wind price to the options price and 
at the 10% (low) significance level from the options price to the 
wind price.

In the case of TAS, the GC result indicates that the solar and wind 
prices Granger-cause the spot electricity price at the 1% (high) 
level of significance. However, no GC is noted from the spot 
electricity price to the solar and wind prices.

5.7. Impulse Response Test Results
This study conducted an IRA to determine the speed and duration of 
the interactions among the spot, options, solar, and wind electricity 
prices in the ANEM. The IRA was performed based on the generalized 
method established by Pesaran and Shin (1998). This technique 
avoids variations in the results due to the ordering of variables, which 
is a problem that occurs when using the Cholesky decomposition 
method. The results of the generalized IRA are presented as figures 
showing the impulse responses for the spot, options, solar, and wind 
electricity prices, with the responses being plotted between 1 ≤ t ≤10.

Table 5: Granger causality Wald tests for spot, option, solar and wind electricity prices
Equation Excluded Chi‑square df P‑value Equation Excluded Chi‑square df P‑value

NSW QLD
Spot Option 11.523 3 0.003 Spot Option 5.6013 3 0.061
Spot Solar 13.629 3 0.001 Spot Solar 14.346 3 0.001
Spot Wind 12.055 3 0.002 Spot Wind 10.128 3 0.006
Spot ALL 47.282 9 0.000 Spot ALL 47.282 9 0.000
Option Spot 1.8729 3 0.392 Option Spot 0.47599 3 0.788
Option Solar 8.0838 3 0.018 Option Solar 2.5081 3 0.285
Option Wind 11.761 3 0.003 Option Wind 6.7346 3 0.034
Option ALL 126.24 9 0.000 Option ALL 126.24 9 0.000
Solar Spot 0.24048 3 0.887 Solar Spot 0.3926 3 0.822
Solar Option 3.8357 3 0.147 Solar Option 2.2567 3 0.324
Solar Wind 11.19 3 0.004 Solar Wind 12.949 3 0.002
Solar ALL 126.24 9 0.000 Solar ALL 126.24 9 0.000
Wind Spot 4.0539 3 0.132 Wind Spot 4.5786 3 0.101
Wind Option 8.4026 3 0.015 Wind Option 5.2738 3 0.072
Wind Solar 11.951 3 0.003 Wind Solar 7.9221 3 0.019
Wind ALL 126.24 9 0.000 Wind ALL 126.24 9 0.000

VIC SA
Spot Option 0.67602 3 0.713 Spot Option 3.4282 3 0.180
Spot Solar 11.378 3 0.003 Spot Solar 4.9153 3 0.086
Spot Wind 12.697 3 0.002 Spot Wind 4.6221 3 0.099
Spot ALL 47.282 9 0.000 Spot ALL 47.282 9 0.000
Option Spot 1.7324 3 0.421 Option Spot 1.6948 3 0.429
Option Solar 5.4878 3 0.064 Option Solar 20.802 3 0.000
Option Wind 8.9984 3 0.011 Option Wind 21.621 3 0.000
Option ALL 126.24 9 0.000 Option ALL 126.24 9 0.000
Solar Spot 1.4519 3 0.484 Solar Spot 1.1154 3 0.573
Solar Option 2.2128 3 0.331 Solar Option 0.72397 3 0.696
Solar Wind 12.341 3 0.002 Solar Wind 13.068 3 0.001
Solar ALL 126.24 9 0.000 Solar ALL 126.24 9 0.000
Wind Spot 0.85627 3 0.652 Wind Spot 1.8782 3 0.391
Wind Option 6.3063 3 0.043 Wind Option 4.6745 3 0.097
Wind Solar 10.079 3 0.006 Wind Solar 12.776 3 0.002
Wind ALL 126.24 9 0.000 Wind ALL 126.24 9 0.000

TAS
Spot Solar 8.5692 3 0.014
Spot Wind 8.6469 3 0.013
Spot ALL 47.282 9 0.000
Solar Spot 1.5881 3 0.452
Solar Wind 17.505 3 0.000
Solar ALL 126.24 9 0.000
Wind Spot 0.06329 3 0.969
Wind Solar 11.968 3 0.003
Wind ALL 126.24 9 0.000
Null hypothesis was rejected when the probability value was <0.05. NSW: New South Wales, QLD: Queensland, SA: South Australia, VIC: Victoria, TAS: Tasmania, VAR: Vector 
autoregression
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The IRA was performed on the NSW variables, and the effects 
are shown in Figure 2. However, relative to the impact of the 
wind price shock, the spot price first decreased and then increased 
rapidly at t = 3 before tending toward zero at t = 10. In response 
to the wind price shock, the options price did not move markedly 
in a positive direction and, in fact, moved in a negative direction 
after t = 2. As a result of a single shock to the wind price, the 
solar price first increased and then decreased rapidly after t = 2. 
Further, in response to a spot price shock, the options price moved 
markedly in a positive direction after t = 1, thereafter exhibiting 
an increasing trend toward zero between 5≤ t ≤10 In addition, 
Figure 2 shows that the options price did not markedly affect the 
spot, solar, and wind prices.

For QLD, relative to the impact of a solar price shock, the spot 
price first decreased and then moved markedly in a positive 
direction. In contract, in response to a solar price shock, the 
options price moved markedly in a negative direction. As a result 
of a wind price shock, the spot price initially became negative and 
then became positive. Further, in response to a wind price shock, 
the variable options price decreased sharply after t = 2 Figure 2 
shows that a unit shock to the spot price caused the options price 
to become positive and then to decrease sharply after t = 3 so as 
to become negative. However, the options price shock did not 
noticeably affect the other variables.

In the case of VIC, as a result of a solar price shock, the spot price 
initially became negative and then became positive after t = 2 
Moreover, the variable options price oscillated in response to a 
solar price shock, that is, the options price first decreased and then 
became positive and continually decreased from t = 5 onwards so 
as to be negative. In response to a wind price shock, the spot price 
increased after t = 2, while the options price decreased sharply after 
t = 4 Further, the spot price variable was not significantly affected 
by the options price and, similarly, the options price variable was 
not significantly affected by the spot price.

With regard to SA, relative to the impact of a solar price shock, 
the spot price first decreased and then moved markedly in a 
positive direction after t = 3. In response to a solar price shock, 
the options price moved in a negative direction. Yet, the response 
of the wind price to a shock in the spot price was positive and 
extended in an upward direction, while the options price response 
was negative and extended in a downward direction. Further, in 
response to a spot price shock, the options price first decreased and 
then increased rapidly at t = 3 before tending toward zero at t = 8.

In terms of TAS, the response of the solar price to a shock in the 
spot price was negative and exhibited a downward direction, while 
the response of the wind price to a shock in the spot price was 
positive and exhibited an upward direction.

5.8. Variance Decomposition Test Results
Another important aspect of a VAR analysis concerns the ability 
to see how an innovation from one variable affects both itself and 
other variables. This can be achieved by applying the FEVD. The 
theory behind the FEVD is straightforward. First, it is necessary 
to forecast the VAR model. Then, the error and variance of the 

forecast error in any h-step forecast are calculated. During this 
step, the variance of the forecast error is the sum of all the portions 
of all the shocks. Finally, the FEVD is calculated by dividing 
the portions of each shock to the compound variance. If the 
innovation of one variable accounts for a large part of the total 
variance in itself or in another variable in the h-step forecast, we 
can say that the former variable has an important effect on itself 
or on the latter variable.

This study’s analyses applied FEVD to investigate the relationships 
between the spot, options, solar, and wind electricity prices in 
the ANEM, as well as to gauge the influences that the variables 
exert on each other. Table 6 presents the results of the variance 
decomposition. The reported numbers indicate the percentage 
of the forecast error in each variable that can be attributed to 
innovations in the other variables at ten different horizons: from 
1 to 10 months ahead (short-run to long-run).

With regard to the situation in NSW, the variance decomposition 
of the spot prices reveals that the major changes in the spot price 
are attributable to its own innovation. Further, the contribution of 
the options price is 8.21%, the solar price is 8.03%, and the wind 
price is 7.57% over the 10-month period. The results also show 
that 79.72% of the options price is explained by its own innovative 
shocks. The contributions of the spot, solar, and wind prices to the 
options price are 1.68%, 8.81%, and 9.76%, respectively.

In relation to QLD, the results of the variance decomposition 
approach show that 84.52% of the electricity spot price is explained 
by its own innovative shocks, whereas the contributions of the 
options, solar, and wind prices to the spot electricity price are equal 
to 5.65%, 6.74%, and 3.07%, respectively. The results also show 
that 94.38% of the options electricity price is explained by its own 
innovative shocks. The spot electricity price’s contribution to the 
options price is 1.99%, the solar price contributes to the options 
price to only a very negligible extent (0.25%), and the wind price’s 
contribution to the options price is 3.35%.

In terms of VIC, the forecast error variance of the spot electricity 
price is explained by its innovation as well as by the options, solar, 
and wind electricity prices in the final period with a distribution of 
84.95%, 0.26%, 5.70%, and 9.07%, respectively. For the options 
electricity price, at the end of the tenth period, 87.51% of the 
variance decomposition is explained by options electricity price 
itself. The roles of the spot, solar, and wind electricity price shocks 
are almost equally important, and they can each explain about 12% 
of the variance decomposition in the options electricity price at 
the end of the tenth period.

In the case of SA, the variance decomposition of the spot electricity 
price shows that the main change in this variable results from its 
own innovation. The contributions of the options, solar, and wind 
electricity prices to the spot electricity price are 0.84%, 2.71%, 
and 3.39%, respectively. For the options electricity price, the 
contribution of the solar price is the most important, accounting 
for about 21%, while the contribution of the wind price is the 
second most important, accounting for roughly 15%, and the spot 
electricity prices accounts for about 10%.
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With regard to TAS, the variance decomposition reveals that the 
forecast error variance of the spot electricity price is completely 
explained by itself during the first period. At the end of the tenth 
period, 5.54% of the forecast error variance of the spot electricity 
price is explained by the wind price, while the contribution of the 
solar price is 3.56%. The results show that the most important 
variable in terms of explaining the solar price is the solar price itself 
during all the investigated months. In addition, the contribution 
of the spot electricity price is 0.61%, while that of the wind 
price is 20%, over the 10-month period. Further, the variance 
decomposition of the wind price reveals that the major changes 
in it are attributable to its own innovation. The contribution made 
by the spot electricity price is 1.92%, while that made by the solar 
price is 21%.

6. DISCUSSION AND CONCLUSION

The aim of this study was to examine the nature and influence of 
solar and wind prices on the electricity spot and options prices for the 
ANEM. To this end, we applied a VAR model with which we could 
obtain GC, IRF, and FEVD results for interpretation. To the best 
of our knowledge, the present results are not directly comparable 
to the results of any other study due to the methodology used, the 
variables included in the model, and the aim of the analysis.

Generally speaking, the VAR results for the selected time series 
indicated that the spot and options electricity prices were strongly 
influenced by themselves in the ANEM. Further, the VAR results 
showed that the options electricity price had a strong influence 
on the spot electricity price in NSW and QLD. Furthermore, the 
wind electricity price had a medium-to-strong influence on the 
options price in NSW, VIC, and SA.

This study’s analyses applied FEVD to investigate the relationships 
among the spot, options, solar, and wind electricity prices in the 
ANEM, as well as to gauge the influences of the variables upon 
one another. The FEVD results indicated that the contribution of 
the solar electricity price to the spot electricity price in NSW, QLD, 
VIC, SA, and TAS was 8.03%, 6.74%, 5.70%, 2.71%, and 3.56%, 
respectively. The results of the FEVD analysis also showed that 
the contribution of the wind electricity price to the spot electricity 
price was 7.57% in NSW, 3.07% in QLD, 9.07% in VIC, 3.39% in 
SA, and 3.56% in TAS. However, the FEVD results suggested that 
the spot and options electricity price shocks were mostly caused 
by their own innovations.

These findings are not surprising for Australia, where fossil 
fuel sources contributed some 212,066 GWh (81%) to the total 
Australia electricity generation in 2018. In fact, coal accounted 
for the majority of the electricity generation (60%) in 2018. 
Renewable sources contributed some 49,339 GWh (19%) to the 
total electricity generation, with the largest source of renewable 
generation being hydro (7% of the total generation), followed by 
wind (6%) and solar (5%) in 2018 (Commonwealth of Australia 
Department of Environment and the Energy, 2019).

GC provides the justification for the predictive causal ability 
of models based on the available information criteria. The GC 

analysis indicated that there was a significant unidirectional 
Granger causal relationship from the solar and wind electricity 
prices to the spot price in NSW, QLD, VIC, and TAS at the 1% 
significance level, while in the case of SA the relationship was 
significant at less than the 10% level. In addition, there was one-
way GC from the solar electricity price to the options price in 
NSW (at the 5% significance level), VIC (at the 10% significance 
level), and SA (at the 1% significance level). However, the VAR 
model revealed bidirectional Granger causal relationships from 
the wind electricity price in NSW and VIC (at the 5% significance 
level) as well as in QLD and SA (at the 10% significance level).

This finding is consistent with the prior literature concerning the 
relationship between the electricity price and renewable energy 
consumption (Ata, 2018; Kyritsis et al., 2017). The results of 
Kyritsis et al. (2017) showed that there is statistically significant 
evidence of GC from solar power generation and wind power 
generation to the electricity prices.

Finally, this study attempted to forecast the spot, options, solar, and 
wind prices in the ANEM using the VAR model with a 2-year horizon. 
The forecast results concerning the spot electricity price suggested 
that price decreases for NSW (10.87%), QLD (11.21%), VIC 
(23.67%), SA (43%), and TAS (8.27%). Similarly, the forecast results 
concerning the options electricity price indicated price decreases for 
NSW (19.78%), QLD (4.25%), VIC (13.51%), and SA (8.84%).

These findings are similar to those of certain prior studies (Bell 
et al., 2017; Csereklyei et al., 2019). For instance, Bell et al. 
(2017) found that increasing wind power penetration decreased 
the wholesale spot prices, although retail prices increased for 
many Australian states. Csereklyei et al. (2019) found that an extra 
GW of wind capacity decreased the wholesale electricity price by 
11 $/MWh, while an extra GW of solar capacity decreased the 
wholesale electricity price by 14 $/MWh, in the ANEM.

In summary, the VAR models applied in this study helped to 
provide a better understanding of the overall nature of the 
relationships that exist between the spot, options, solar, and 
wind electricity prices in the ANEM. The analyses showed that 
the relationships between the four variables were discernible 
using the times series methodology. The results of this study are 
hence of value to energy analysts, government organizations, 
and policymakers in terms of the Granger causalities, forecast 
variances, and impulse responses. The results support the notion 
that energy policies in Australia should continue to support wind 
and solar electricity generation because such an approach leads 
to higher spot and options electricity prices. On the contrary, 
energy policies that support the further penetration of renewables 
are likely to create effects that decrease the wholesale electricity 
prices. In addition, energy policies that support renewables are in 
line with medium- and long-term aims regarding the reduction of 
greenhouse gas emissions, such as the aim for zero net emissions 
by 2050 (Office of Environment and Heritage, 2015) or Australia’s 
2030 climate change targets (Commonwealth of Australia, 2019).

Future studies should aim to extend the present findings by further 
investigating this matter in Australia by using a multivariate time 
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series analysis. It would be useful to further study the effects 
of the cost and generation of wind and solar power on retail 
electricity prices in Australia as well as other electricity derivatives 
markets, such as futures and forwards. Furthermore, comparing 
the interdependence of electricity pricing in Australia, Europe, and 
the USA would help to develop a solid foundation upon which 
a number of implications and recommendations can be drawn 
regarding the nature of the associated trends, autocorrelations, 
Granger causalities, variance decompositions, and impulse 
responses.
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