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ABSTRACT

This study addresses the problem of causal price relationships of biofuels for an enhanced group of agricultural commodities to capture possible 
asymmetric causal effects. It investigates the long-run equilibrium and assumes that an adjustment process toward this equilibrium exists. The adjustment 
process can be non-linear, implying that we can identify critical thresholds that determine regions in the sample that once exceeded, price inter linkages 
may vary. The empirical results indicate that there are commodity prices that have strong causal (asymmetric) relationship with biofuel energy prices.
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1. INTRODUCTION

Over the last four decades the agricultural production has been 
characterized by falling real prices (Schmidhuber, 2006) and this 
is primarily the result of the lowering production costs due to the 
adoption of new technologies. However, the very recent years we 
have witnessed an increase in prices and this comes out as the 
result of several factors. There is an ongoing debate starting with 
the agricultural commodity price spikes in 2007/2008 and more 
recently in 2010/2011. One of the most frequently mentioned 
factors of soaring agricultural prices (and hence food prices) is 
the use of food crops for the production of biofuels. Though, the 
increasing production of biofuels puts considerable concerns for 
the future developments in food prices and the food security levels 
worldwide. These concerns necessitate a review of the policies 
on biofuel production and the use of land for biofuels feedstock.

Biofuels are promoted as one of the most significant substitutes 
of fossil fuels with a considerable share growth in recent years. 
They are environmental friendly, targeting to the reduction of 
the greenhouse gas emissions, produced primarily by feedstocks 
as they are sugarcane and maize (corn), and used mainly in the 
transportation sector. Insofar, nevertheless, only few countries 
have special interests in biofuels. Our endeavor focuses on the 
effect of food price competition with emphasis (which is the 

main novelty of this work) given on the presence of potential 
asymmetries in the nexus between agricultural and biofuel prices. 
Specifically, the question we like to address is: Why biofuels 
prices have recently increased strongly, following strong energy 
prices, despite the decrease of feedstock prices (mainly sugar 
and corn)? It seems that biofuels, though an imperfect substitute 
of diesel and gasoline, are considerably related to crude oil 
prices and the scope of our analysis is to shed light to potential 
asymmetries between agricultural and biofuel prices. We are 
expecting that our findings could contribute to the policy debate 
about biofuels as possible (major) source of rises in food prices 
leading to food crises. Moreover, there is eventually a break-even 
point where the land competition makes the land use for biofuels 
a welfare worsening option. The technologies that use biofuels 
may become non-competitive with adverse effects in the industry. 
Cost efficiency is an important factor for adopting the biofuels 
technology and the presence of asymmetries in the relationship 
that links agricultural and biofuel prices may deter the further 
development of biofuels use.

Section 2 presents the literature review related to in this paper, 
while Section 3 presents the model specification followed in the 
empirical analysis. Section 4 presents the data used, including 
data on biofuel prices, as well as data on non-energy (agricultural) 
commodities. Section 5 documents the empirical results, while 
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the paper concludes with Section 6 that provides a summary of 
the main results.

2. LITERATURE REVIEW

There are several studies that have examined the spillovers between 
the biofuels’ expansion and the price of agricultural feedstock. The 
general outcome seems to support the argument of competition for 
land use between the production of food and biofuels feedstock. 
The implied land use substitutability raises more questions on 
the price formation of food products. For instance, a significant 
question is related to the effect on income distribution and the 
social welfare. Low income households spend disproportionately 
higher share of their income on food expenditures, making them 
more vulnerable to food price volatility. As a result, households 
reduce their savings to meet their nutrition needs and once their 
savings are drained they switch their diet to less nutritious foods 
or they become undernourished.

The way biofuels energy prices are channeled on food prices can be 
identified at the upstream level, in feedstocks supply. Biofuels are 
competing food stuffs for the same crops of feedstocks, i.e., wheat, 
corn etc. However, this is not always the case, since many times the 
varieties used for distilling biofuels are not recommended for food 
production or animal feed. Schmidhuber (2006) suggests that the 
competing crops are not an unsolvable problem and that there are 
both floor and ceiling prices in agriculture; however, these prices 
are endogenous to fossil energy prices. This comes out from the 
high dependency of biofuels energy prices on fossil energy prices.

The idea of asymmetric links between fossil prices and agricultural 
commodity prices is related to the crop re-allocation and switching 
costs issues. According to Ajanovic (2011) the most suitable land 
for biomass production is already in use. In 2006, about 1% of 
the world’s arable land was used for the production of biofuels. 
Insofar, only a 1% of biofuels serve the transportation sector 
worldwide, and if we are to double this production level, this can 
be happen either if the fuel demand is to be reduced or if the land 
productivity is to dramatically increase. If neither scenario occurs, 
the land use competition will push thing to a land use substitution 
against food production.

The relatively constant supply of land, in combination with the 
biofuel policies that push demand for biofuels upwards, engenders 
a land use substitution to crops that may be used as biofuel 
feedstock. That means that less land will become available for 
staple crops that can alternatively be used for biofuel feedstock, 
and taking into account the limitations of yield increases due to 
technological constraints, the supply of many food crops will 
inevitably be reduced. Moreover, it will prompt the conversion 
of pasture and forest lands to croplands. The idea behind this 
substitution effect is simple. Farmers and land managers would 
change their crop to other staple crops that can be used as biofuels 
feedstock once the demand is not coming only for food but also 
from the biofuels production. Prices are partly driven by the 
biofuels policies and are anticipated to increase rapidly, creating 
opportunities for significant profitability. The incurring costs by 
the switch may be significant as well but once the potential profits 

amortize the necessary fixed costs in a short period, the investment 
decision becomes viable.

The year 2008 was characterized by soaring food prices and 
increasing volatility. The International Monetary Fund’s (IMF’s) 
index of internationally traded food commodity prices soared by 
56% from January 2007 to June 2008 (Mitchell, 2008). These 
developments are attributed in several factors, among others, 
the increasing demand for food items originated from emerging 
economies, i.e., mainly India and China. From the supply side, we 
highlight the increased crude oil prices as well as the increased 
share of first generation biofuels. Energy accounts for an important 
share in the overall cost of food products and energy price hikes 
transmitted to the intermediate production levels of food products, 
primarily in production and transportation. Onour and Sergi 
(2011) indicate that shocks in oil markets have permanent effect 
on food commodity price changes and evidenced that this effect 
may occur either directly or indirectly via the cost of fertilizers. 
They also illustrate that the increased demand for feedstock for 
biofuels had had also an important role in the volatility of food 
prices. Mitchell (2008) provides some illuminating numbers for 
the effect of biofuels. In 2007, about 7% of global vegetable oil 
used for biodiesel production while for the period 2004-2007, the 
one third of the consumption increase was due to the demand for 
biodiesel. For the same period (2004-2007) the increase in maize 
production was absorbed by 70% for ethanol production. In the 
U.S. the rapid demand for maize displaced the soybean production, 
contributing by 75% to the rise of soybean prices in 2007-2008. 
In the E.U., respectively, the oilseed production displaced wheat, 
lowering the wheat stocks. Timilsina and Shrestha (2010) survey 
extensively the existing literature on the impact of biofuels on 
food crisis of 2008. They highlight that most studies agree on 
the role of the expanded biofuel production as one of the main 
drivers of food prices hikes in 2008. However, they stress that the 
interdependence with other drivers, as they are fossil oil prices, 
ought not to be neglected. Baier et al. (2009) show that the biofuel 
production was responsible for the rises in food prices by 17% 
in corn, 14% in soybean and 100% in sugar. The result for corn 
prices is in accordance with Lazear (2008) for the US market 
ethanol production. He finds that US ethanol increase was due for 
the 20% of the increase in corn prices. Glauber (2008) finds that 
US biofuel production accounted for about 25% of the rise in corn 
prices. The interested reader is also advised to turn to two great 
survey papers by Zilberman and Serra (2013) and Zilberman et al. 
(2013) who provide an extensive literature review on the rapidly 
growing biofuel-related time-series studies that have been carried 
out. Such energy prices drive long-run agricultural price levels, 
while the presence of instability in these biofuels energy markets 
is transferred to food markets. These surveys highlight, however, 
that biofuels have not been the most dominant driver to the 
recent food-price inflation, while different types of biofuels have 
different impacts. Finally, Abderladi and Serra (2015) explore the 
proportion of agricultural production spent for biofuels purposes 
in the case of Spain. In particular, they explore the presence of 
asymmetric volatility spillovers between food and biofuel prices. 
Through an asymmetric MGARCH model their findings highlight 
the bidirectional and asymmetric volatility spillovers between the 
two variables under study.
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3. MODEL SPECIFICATION

The main hypothesis posits that a linear model describing the 
nexus between agricultural commodity markets and biofuels is 
specified as follows:

lnCOMt=b0+b1lnBIOt+ut (1)

Where BIO is the price of biofuels, COM is the price of non-
energy commodity prices described below, ln denotes the natural 
logarithm, and u is the error term. The coefficient b1 measures 
the impact of biofuel prices on non-energy commodity prices; it 
is expected to be positive. In other words, an increase (decrease) 
in biofuel prices is expected to lead to higher (lower) non-energy 
commodity prices due to a rise (decline) in the cost of production.

4. DATA

We obtained daily data on biofuel prices (i.e., seasonal biodiesel 
prices-FAME) as well as on seven non-energy commodities. 
However, all prices do not cover the same time span. The details 
about biofuels, non-energy commodities, their definition and their 
time span, are provided in the Appendix 1 of this study. Data were 
obtained from Bloomberg. To avoid the impact of seasonality and 
given that energy demand exhibits seasonal fluctuations due to 
changing climate conditions, such as temperature and the number 
of daylight hours, as well as that supply side also can show seasonal 
variations in output, we need to seasonally adjust our biofuels data 
sample by making use of the moving average (MA) methodology 
recommended by Weron (2006). To this end we considered the 
MA-6 model as a good method for seasonal adjustment for our daily 
biofuels prices data. In terms of the agricultural daily prices data, the 
same procedure considers different MA models (depending upon the 
nature of the agricultural commodity) that deals with seasonality. 
The results recommended: A MA(7) model for corn, a MA(7) 
model for sugar cane (sc), a MA(4) model for soybeans oil (sboil), 
a MA(6) model for sunflowers oil (sfoil), a MA(18) model for palm 
oil (poil), a MA(7) model for camelina oil (coil), and a MA(7) model 
for sugar. In addition, we further filter out agricultural prices data by 
using the Kalman filter to filter out estimates of convenience yields.

5. EMPIRICAL ANALYSIS

5.1. The Non-linear-asymmetric Case
First, we examine for the presence of non-linearities in relevance 
to model equation (1). To this end, this part of the empirical 
analysis makes use of the non-linearity test proposed by Hamilton 
(2001), which investigates the null hypothesis that the true 
relationship between biofuels and agricultural prices is linear. 
Hamilton’s (2001) v2-statistic has an asymptotic χ2(1) distribution 
under the null hypothesis of linearity. The results are reported in 
Table 1. These findings document that the null hypothesis that the 
relationship between biofuels and agricultural prices (across all 
agricultural products considered here) is linear is rejected.

Next, we explore the number of relevant regimes driving the time 
series under investigation. To this end, we allow for a Markov-

switching model that allows for multiple regime shifts (Nason, 
2006; Stock and Watson, 2007). The main distinguishing feature 
of the model is the allowance for possible discrete regime shifts 
by letting the model parameters depend on an N-state Markov-
switching variable with fixed transition probabilities. For such 
Markov-switching models, the null hypothesis tests for the number 
of regimes which are confounded by identically zero scores at the 
null and the presence of nuisance parameters under the alternative 
(Hansen, 1992; Garcia, 1998). Thus, the test addresses the question 
of how many regimes to include in the modeling approach. First, 
we consider model selection based on the Akaike information 
criterion (AIC). Second, we verify our model selection results 
by conducting residual diagnostic tests. Specifically, we consider 
whether a given model captures all of the serial correlation and 
heteroskedasticity in the data using the modified Ljung-Box 
portmanteau tests for the standardized residuals and squared 
standardized residuals. Looking at the results in Table 2, AIC 
selects two regimes instead of three (or more).

Zivot and Andrews (1992) propose a testing procedure where the 
time of the break is estimated, rather than assumed as an exogenous 
phenomenon. The null hypothesis in their method is that the 
variable under investigation contains a unit-root with a drift that 
excludes any structural break, while the alternative hypothesis is 
that the series is a trend stationary process with a one-time break 
occurring at an unknown point in time. Table 3 summarizes the 
result of the Zivot and Andrews (1992) test in the presence of 
structural break allowing for a change in both the intercept and 
trend. In this model, the break point is endogenously determined 

Table 1: Non-linearity tests (bivariate model)
Variables v2-statistic P-value
corn 8.71 0.00
sc 9.95 0.00
sboil 7.48 0.01
sfoil 8.65 0.00
poil 6.99 0.01
coil 6.53 0.02
sugar 7.38 0.01

Table 2: Number of regimes tests (two vs. three 
regimes)-the bivariate model
Lag Standardized residuals Squared standardized 

residuals
Q*-statistic P-value Q*-statistic P-value

corn
4 0.091 0.75 0.016 0.91

sc
3 0.056 0.84 0.011 0.97

sboil
3 0.039 0.96 0.006 0.99

sfoil
2 0.064 0.78 0.028 0.86

poil
4 0.048 0.89 0.035 0.8

coil
3 0.073 0.71 0.051 0.69

sugar
3 0.05 0.86 0.032 0.83

The Q*-statistic refers to the modified Ljung-Box portmanteau test statistic
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by running the model sequentially allowing for this break point to 
be any day within a 15% trimming region. The optimal lag length 
is determined on the basis of the Schwartz-Bayesian Criterion. 
Using the Zivot and Andrews (1992) procedure, the time of the 
structural changes (impacting on both the intercept and the slope of 
each series) for each of the variables is detected and the results are 
also presented in Table 3. As shown, the most significant structural 
breaks occur around January 2008. This date corresponds broadly 
to the pronounced structural changes associated with the 2008 
food crisis. Nevertheless, the results document the presence of 
stationarity only in the first differences of the variables under study.

In the next step, we test for unit root tests through non-linear 
threshold autoregressive (TAR) unit root tests, recommended by 
Caner and Hansen (2001), in relevance to the hypothesis of no 
threshold effect and in relevance to the above results reported in 
Table 3. Non-linearities can arise because small deviations are not 
considered important by participants in the relevant energy and 
non-energy commodity markets, whereas for larger deviations, 
the pressure from these markets to return adjustable prices near 
the equilibrium value becomes larger (Taylor and Peel, 2000). 
Alternatively, non-linearities can also arise as a consequence 
of transaction costs and market frictions (Dumas, 1992). The 
conventional linear unit root tests are biased against rejecting 
nonstationarity when the true process is non-linear.

The non-linear (asymmetric) model is a two-regime symmetric 
TAR model with an autoregressive root that is local-to-unity. 
Table 4 reports the bootstrap P-values for threshold variables of 
the form Zt=xt–xt−m−1 for delay parameters m from 1 to 8 and where 
x is either the biofuel energy or the non-energy commodity price. 
Because the delay parameter (m) is generally unknown, we let it be 
endogenously determined. The ordinary least squares estimate of 
the delay parameter (m) is chosen so that it minimizes the residual 
variance for the TAR model of each deviation series. The entries of 
the table are P-values obtained using 10,000 bootstrap simulations 
(replications). These P-values correspond to the delay parameters 
that minimize the residual variances across the two regimes. The 
insignificance of such P-values indicates the presence of a unit root. 
In addition, the least squares estimates of m is shown in Table 3. 
For these delays parameters the bootstrap P-values indicate that for 
the levels of all the variables under examination the no threshold 
effect hypothesis is strictly rejected in all cases. By contrast, 
for the variables in first differences, the bootstrap P-values are 
significant, implying that we should reject the null hypothesis 
of the unit root and accept stationarity of all the variables under 
study. To discriminate between pure nonstationarity and partial 
nonstationarity, we employ test statistics t1 and t2. The results 
provide strong evidence that all prices under examination are 
nonstationary across both regimes.

Kunitomo (1996) explains that in the presence of a structural 
change, traditional cointegration tests may produce spurious 
evidence concerning cointegration or the lack of cointegration. 
Saikkonen and Lütkepohl (2000a; 2000b; 2000c) propose a test 
for cointegration analysis that allows for possible shifts in the 
mean of the data-generating process. They argue that researchers 
should make appropriate adjustments if structural shifts are known. 

Table 3: Zivot-Andrews unit root tests with breaks in the 
intercept and trend
Variable k ta Break
bio 5 −3.26 January 20, 2008
Δbio 4 −6.39
corn 4 −3.71 January 12, 2008
Δcorn 3 −6.30
sc 6 −4.02 January 23, 2008
Δsc 5 −7.28
sboil 5 −3.58 February 02, 2008
Δboil 3 −6.35
sfoil 6 −3.63 January 18, 2008
Δsfoil 4 −6.90
poil 6 −4.24 February 05, 2008
Δpoil 5 −7.41
coil 5 −3.82 January 21, 2008
Δcoil 3 −6.63
sugar 4 −4.12 February 17, 2008
Δsugar 3 −7.24
ta is the estimated t-statistic related to the null hypothesis of the presence of a unit root 
under a break and k is the number of lags in the test. Critical values at 1%, 5% and 10% 
levels are−5.57, −5.08 and−4.82, respectively

Table 4: Non-linear unit root tests
Variable m t1 t2
bio 2 0.42 0.19
Δbio 2 0.01 0.00
corn 1 0.38 0.27
Δcorn 1 0.00 0.00
sc 2 0.37 0.26
Δsc 2 0.02 0.03
sboil 3 0.24 0.11
Δboil 2 0.01 0.00
sfoil 3 0.49 0.25
Δsfoil 1 0.00 0.04
poil 2 0.40 0.21
Δpoil 1 0.03 0.00
coil 2 0.56 0.28
Δcoil 1 0.02 0.01
sugar 1 0.44 0.25
Δsugar 1 0.00 0.01
Δ denotes first differences. Figures for t1 and t2 denote P values were obtained from 
10,000 replications. Estimations stand for the inclusion of both constant and trend terms, 
m is the delay parameter, t1 stands for the unit root test in regime 1, t2 stands for the unit 
root test in regime 2

According to Saikkonen and Lütkepohl (2000b) and Lütkepohl 
and Wolters (2003), an observed n-dimensional time series 
yt=(y1t,….,ynt), yt is the vector of observed variables (t=1,…,T) 
which are generated by the following process:

yt=μ0+μ1t+δ0Dt0t+δ1Du1t+xt (2)

Where Dt0t and DU1t are the respective impulse and shift dummies 
which account for the presence of structural breaks, Dt0t is equal 
to one when t = t0, and zero otherwise and the step (shift) dummy 
(DU1t) is equal to one when (t > t1), and zero otherwise. The 
parameters μ0, μ1, δ0 and δ1 are associated with the deterministic 
terms.

The possible options in the Saikkonen and Lütkepohl (2000a; 
2000b; 2000c) procedure, as for Johansen’s approach, are threefold: 
A constant, a linear trend term, or a linear trend orthogonal to the 
cointegration relations. For the empirical purposes of this research, 
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the optimal number of lags to be included is searched up to 10 lags 
and determined by the Schwartz Baysian information criterion, 
while the timing of the most significant structural breaks has been 
determined above using the Zivot and Andrews (1992) procedure. 
We also consider dummies with trend and intercept included into 
the cointegration relation.

The null hypothesis of a no long-run relationship between biofuel 
prices and agricultural commodity prices is tested and the results 
are reported in Table 5. The empirical results indicate that the 
null hypothesis of no cointegration is rejected at the 1% level of 
significance. In other words, there is evidence of a stable long-run 
relationship between biofuel prices and agricultural commodity 
prices across the entire spectrum of agricultural commodities 
considered as long as allowance is made for significant structural 
changes in the agricultural commodity prices regime in 2008. Put 
differently, since the long-run biofuel prices and the agricultural 
commodity prices move together, biofuel prices are mutually 
interacted with the prices of the primary agricultural commodities 
used for the production of biofuels.

Next, we estimate a threshold error correction model (TECM) 
across all pairs between biofuel energy prices and non-energy 
(agricultural) commodity prices. To this end, this study adopts the 
method of Hansen and Seo (2002) to obtain a consistent estimate 
of the threshold by applying maximum likelihood. This particular 
methodology generates substantially consistent results for the 
case of bi-variate models. The consistent threshold estimate can 
be obtained by ordering the εt (the residuals from cointegration) 
sequence in ascending order, such that ε1<ε2<…<εT, where T is 
the number of usable observations, while truncating the upper and 
lower 15%, leaves 70%. Substituting this 70% into the model, the 
estimated threshold yielding the lowest residual sum squares is the 

consistent estimate of the threshold. Based on the unit root tests 
allied previously which identified the presence of two regimes, 
the transmissions are tested using the TECM. The estimated two-
regime TECM results are presented in Table 6. These findings 
identify two regimes across all cases under investigation with 
statistically different EC coefficients (Wald tests). The first regime 
matches the period prior to the commodity price spikes, while in 
the majority of the cases the magnitude of the EC term turns out 
to be larger (indicating faster adjustment toward equilibrium) in 
the first regime (the one that led to the commodity price spike 
around 2008).

Across all equations, the adjustment parameters are statistically 
significant, implying that both biofuel energy prices and 
agricultural prices drive agricultural prices and biofuel energy 
prices, respectively, toward the equilibrium level. For instance, 
in the case of corn, over the first regime period, the magnitude of 
the corn EC coefficient (−0.128) indicates slower adjustment to 
long-run equilibrium, whereas in the second regime the adjustment 
is faster (−0.181). In other words, the convergence to long-run 
equilibrium is not uniform over the time span under study, i.e., it 
is faster when the deviation from equilibrium is above the critical 
threshold, while in terms of the biofuel energy price equation, 
the results highlight the different speed of adjustment toward 
equilibrium across the two regimes (−0.151 vs. −0.166), with 
the speed also being faster in the second regime. The presence of 
the regimes along with the different speeds of adjustment toward 
equilibrium across regimes documents that both corn prices and 
biofuel energy prices are more vulnerable to biofuel energy prices 
and corn prices, respectively, compared to the past. The results 
remain robust in the remaining markets. Overall, the convergence 
to long-run equilibrium is not uniform, i.e., it is characterized 
by an asymmetric behavior, while it turns out to be faster when 
the deviation from equilibrium is above the critical threshold. 
These findings could potentially indicate that the presence of 
such asymmetries are likely due to the availability of alternative 
feedstocks in the market, along with the reluctance of biodiesel 
producers to increase food prices when feedstocks become more 
expensive.

5.2. Robustness Check: The Case of a Multivariate 
Model
To investigate the robustness of our results, we also include the 
U.S. dollar exchange rate in the modeling analysis, as there is 
strong evidence that commodity prices have been sensitive to the 
U.S. dollar over a long period (Chen et al., 2008; Clements and 
Fry, 2008; Roache, 2008). Roache (2008) argues that commodities 
are often viewed as a hedge against U.S. dollar depreciation 
versus other major currencies with large financial market-related 
turnover, such as the yen, the Euro and the pound sterling. The 
IMF nominal effective exchange rate (with data obtained from the 
IFS database) index provides clean exposure to these currencies. 
In addition, our robust modeling approach considers the role of 
oil prices (data obtained from Bloomberg). Hanson et al. (1993) 
argue that increases in crude oil prices are followed by higher costs, 
resulting in rising agricultural prices, which are also expected 
to affect biofuels prices. Dramatic increases in crude oil prices 
contribute to further rising food prices, as well as to a closer link 

Table 5: Saikkonen and lutkephol cointegration test 
results (bivariate model)
r0 LR P-value
corn

0 59.84 0
1 1.19 0.64

sc
0 63.49 0
1 1.05 0.77

sboil
0 52.74 0
1 0.97 0.83

sfoil
0 48.96 0
1 0.71 0.89

poil
0 60.92 0
1 1.14 0.71

coil
0 42.85 0
1 0.68 0.9

sugar
0 55.03 0
1 1.26 0.57

Cointegration results indicate that the corresponding null of no cointegration is rejected 
at the 1% level. Critical values are tabulated by Saikkonen and Lutkephol (2000b). The 
optimal number of lags (searched up to 10 lags) is determined by the Schwartz Baysian 
information criterion
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Table 6: Two-regime TECM results (bivariate model)
Corn equation regime I (ECt−1≤−4.55) II (ECt−1>−4.55) Wald-test
Constant −0.471(−0.48) −1.238(−0.99) [0.01]
ECt−1 −0.128(−5.13)* −0.181(−6.38)*
Δcornt−1 −0.346(−4.38)* −0.393(−4.63)*
Δcornt−2 −0.118(−4.31)* −0.210(−4.55)*
Δcornt−3 −0.088(−6.22)* −0.163(−4.38)*
Δbiot−1 −0.227(−4.29)* −0.177(−5.40)*
Δbiot−2 −0.162(−3.93)* −0.142(−3.68)*
Δbiot−3 −0.133(−3.52)* −0.159(−4.32)*
Biofuel equation regime I (ECt-1≤−4.55) II (ECt-1>−4.55) Wald-test
Constant 0.338 (0.37) −0.541(−0.78) [0.00]
ECt−1 −0.151(−5.74)* −0.166(−5.28)*
Δcornt−1 −0.277(−4.05)* −0.428(−4.90)*
Δcornt−2 −0.160(−3.84)* −0.274(−4.24)*
Δcornt−3 −0.105(−4.38)* −0.181(−4.27)*
Δbiot−1 −0.271(−4.93)* −0.238(−4.29)*
Δbiot−2 −0.185(−4.11)* −0.129(−3.86)*
Δbiot−3 −0.129(−3.91)* −0.107(−4.71)*
Sugarcane equation regime I (ECt−1≤−3.72) II (ECt−1>−3.72) Wald-test
Constant −1.552(−1.13) −1.008(−1.72)** [0.02]
ECt−1 −0.139(−4.84)* −0.167(−5.41)*
Δsct−1 −0.301(−4.71)* −0.422(−5.06)*
Δsct−2 −0.149(−4.06)* −0.262(−4.09)*
Δsct−3 −0.126(−5.36)* −0.192(−4.23)*
Δbiot−1 −0.211(−3.84)* −0.164(−4.33)*
Δbiot−2 −0.133(−3.66)* −0.120(−3.82)*
Δbiot−3 −0.074(−3.61)* −0.133(−4.71)*
Biofuels equation regime I (ECt−1≤−3.72) II (ECt−1>−3.72) Wald-test
Constant −0.772(−0.92) −1.338(−0.91) [0.01]
ECt−1 −0.342(−5.21)* −0.396(−6.14)*
Δsct−1 −0.334(−4.46)* −0.449(−3.95)*
Δsct−2 −0.201(−3.99)* −0.338(−4.11)*
Δsct−3 −0.183(−4.91)* −0.152(−4.83)*
Δbiot−1 −0.297(−4.26)* −0.271(−4.83)*
Δbiot−2 −0.155(−4.48)* −0.133(−3.91)*
Δbiot−3 −0.104(−3.67)* −0.121(−5.22)*
Soybean oil equation regime I (ECt−1≤−4.03) II (ECt−1>−4.03) Wald-test
Constant −0.853(−0.74) −1.237(−1.14) [0.00]
ECt−1 −0.172(−4.22)* −0.241(−5.04)*
Δsboilt−1 −0.344(−5.31)* −0.471(−5.46)*
Δsboilt−2 −0.171(−4.63)* −0.281(−4.35)*
Δsboilt−3 −0.148(−4.82)* −0.211(−4.71)*
Δbiot−1 −0.228(−4.13)* −0.188(−4.52)*
Δbiot−2 −0.138(−3.91)* −0.128(−4.02)*
Δbiot−3 −0.108(−4.16)* −0.148(−4.46)*
Biofuels equation regime I (ECt−1≤−4.03) II (ECt−1>−4.03) Wald-test
Constant −0.641(−0.74) −1.109(−0.83) [0.01]
ECt−1 −0.156(−4.62)* −0.183(−4.87)*
Δsboilt−1 −0.368(−4.72)* −0.483(−4.55)*
Δsboilt−2 −0.243(−4.53)* −0.384(−4.52)*
Δsboilt−3 −0.196(−4.53)* −0.170(−4.94)*
Δbiot−1 −0.319(−4.64)* −0.323(−4.46)*
Δbiot−2 −0.173(−4.77)* −0.151(−4.05)*
Δbiot−3 −0.129(−4.12)* −0.139(−4.82)*
Sunflower oil equation I (ECt−1≤−5.01) II (ECt−1>−5.01) Wald-test
Constant −1.004(−0.63) −1.127(−1.08) [0.00]
ECt−1 −0.136(−4.13)* −0.175(−4.35)*
Δsfoilt−1 −0.284(−4.27)* −0.328(−4.21)*
Δsfoilt−2 −0.127(−4.11)* −0.214(−4.14)*
Δsfoilt−3 −0.094(−4.25)* −0.127(−4.26)*
Δbiot−1 −0.213(−3.94)* −0.136(−4.06)*
Δbiot−2 −0.125(−3.88)* −0.113(−4.14)*
Δbiot−3 −0.102(−4.06)* −0.088(−4.05)*
Biofuels equation regime I (ECt−1≤−5.01) II (ECt−1>−5.01) Wald-test
Constant −0.557(−0.53) −1.009(−0.77) [0.00]

(Contd...)
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Table 6: (Continued)
Biofuels equation regime I (ECt−1≤−5.01) II (ECt−1>−5.01) Wald-test
ECt−1 −0.142(−4.15)* −0.166(−5.12)*
Δsfoilt−1 −0.305(−4.46)* −0.349(−4.17)*
Δsfoilt−2 −0.221(−4.13)* −0.251(−4.11)*
Δsfoilt−3 −0.136(−4.22)* −0.152(−4.28)*
Δbiot−1 −0.285(−4.28)* −0.287(−4.16)*
Δbiot−2 −0.146(−4.19)* −0.148(−4.27)*
Δbiot−3 −0.107(−4.02)* −0.104(−4.16)*
Palm oil equation regime I (ECt−1≤−3.34) II (ECt−1>−3.34) Wald-test
Constant −0.573(−0.46) −1.118(−1.21) [0.00]
ECt−1 −0.158(−4.59)* −0.183(−4.71)*
Δpoilt−1 −0.349(−4.38)* −0.325(−4.43)*
Δpoilt−2 −0.262(−4.25)* −0.241(−4.21)*
Δpoilt−3 −0.148(−4.19)* −0.130(−4.09)*
Δbiot−1 −0.272(−4.16)* −0.142(−4.15)*
Δbiot−2 −0.155(−3.95)* −0.109(−4.36)*
Δbiot−3 −0.122(−4.47)* −0.073(−4.11)*
Biofuels equation regime I (ECt−1≤−3.34) II (ECt−1>−3.34) Wald-test
Constant −0.662(−0.73) −1.127(−1.23) [0.00]
ECt−1 −0.234(−6.07)* −0.328(−5.15)*
Δpoilt−1 −0.289(−4.24)* −0.302(−4.47)*
Δpoilt−2 −0.231(−4.84)* −0.216(−4.22)*
Δpoilt−3 −0.157(−4.38)* −0.162(−4.09)*
Δbiot−1 −0.263(−4.33)* −0.283(−4.69)*
Δbiot−2 −0.171(−4.20)* −0.156(−4.97)*
Δbiot−3 −0.116(−4.32)* −0.129(−4.42)*
Canelina oil equation regime I (ECt−1≤−2.84) II (ECt−1>−2.84) Wald-test
Constant −1.095(−0.91) −1.084(−0.91) [0.03]
ECt−1 −0.145(−4.24)* −0.211(−4.54)*
Δcoilt−1 −0.295(−4.11)* −0.311(−4.63)*
Δcoilt−2 −0.188(−4.52)* −0.209(−4.46)*
Δcoilt−3 −0.126(−4.58)* −0.152(−4.13)*
Δbiot−1 −0.255(−4.27)* −0.142(−4.95)*
Δbiot−2 −0.163(−4.09)* −0.120(−4.35)*
Δbiot−3 −0.137(−4.59)* −0.094(−4.57)*
Regime I (ECt−1≤−2.84) II (ECt−1>−2.84) Wald−test
Constant −0.904(−0.83) −1.110(−1.13) [0.01]
ECt−1 −0.134(−4.14)* −0.205(−4.54)*
Δcoilt−1 −0.276(−4.17)* −0.316(−4.37)*
Δcoilt−2 −0.216(−4.83)* −0.219(−4.96)*
Δcoilt−3 −0.147(−4.66)* −0.127(−4.28)*
Δbiot−1 −0.252(−4.13)* −0.254(−4.68)*
Δbiot−2 −0.175(−4.28)* −0.122(−4.37)*
Δbiot−3 −0.118(−4.29)* −0.101(−4.09)*
Sugar equation regime I (ECt−1≤−3.15) II (ECt−1>−3.15) Wald-test
Constant −0.548(−0.82) −0.483(−0.48) [0.00]
ECt−1 −0.292(−5.61)* −0.372(−5.82)*
Δsugart−1 −0.448(−6.38)* −0.384(−4.92)*
Δsugart−2 −0.375(−5.93)* −0.274(−5.27)*
Δsugart−3 −0.268(−5.18)* −0.226(−4.85)*
Δbiot−1 −0.362(−4.83)* −0.276(−5.38)*
Δbiot−2 −0.285(−4.66)* −0.204(−4.96)*
Δbiot−3 −0.235(−5.17)* −0.148(−4.83)*
Biofuels equation regime I (ECt−1≤−3.15) II (ECt−1>−3.15) Wald-test
Constant −0.749(−0.61) −0.483(−0.92) [0.00]
ECt−1 −0.149(−5.55)* −0.187(−6.31)*
Δsugart−1 −0.294(−4.77)* −0.376(−5.83)*
Δsugart−2 −0.226(−4.52)* −0.274(−4.93)*
Δsugart−3 −0.178(−4.61)* −0.227(−4.61)*
Δbiot−1 −0.283(−4.28)* −0.281(−4.94)*
Δbiot−2 −0.192(−4.82)* −0.225(−4.81)*
Δbiot−3 −0.137(−4.59)* −0.214(−5.69)*
Figures in parentheses denote t-statistics estimated using Eicker–White standard errors (Eicker, 1967; White, 1980), while those in brackets denote P values. The Wald test explores the null 
hypothesis of the equality of the two EC coefficients across the two regimes. **Denote significance at the 10% levels, respectively. TECM: Threshold error correction model
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between energy and agriculture (Cooke and Robles, 2009). Based 
on the above discussion, we repeat the empirical analysis in terms 
of the following model:

lnCOMt=b0+b1lnBIOt+b2lnPOILt+b3lnEt+vt (3)

Where POIL is the international oil prices, E is the US effective 
exchange rate index, and v is the new error term. The remaining 
variables are defined similarly to those in Equation (1). To avoid 
seasonality the oil prices are described through a MA(4) model, 
while the exchange rate through a MA(5) model.

Once again we begin with exploring the presence of non-linearities 
in relevance to model Equation (3). The new results are reported 
in Table 7 and they highlight that the null hypothesis that the 
relationship between biofuels and agricultural prices (across all 
agricultural products under study) is linear is rejected again.

In terms of testing for the number of relevant regimes, the new 
findings reported in Table 8 indicate (once again) the presence of 
two regimes versus the case of three regimes.

Following the identification of the number of regimes, we next 
test for unit root tests through non-linear TAR unit root tests. 
Table 9 reports the bootstrap P-values for threshold variables 
for delay parameters m from 1 to 8. The entries of the table are 
again P-values obtained using 10,000 bootstrap replications. The 
insignificance of such P-values indicates the presence of a unit 
root. The bootstrap P-values indicate that for the levels of all the 

Table 7: Non-linearity tests (multivariate model)
Variables v2-statistic P-value
corn 9.63 0.00
sc 11.58 0.00
sboil 9.81 0.00
sfoil 8.94 0.00
poil 7.62 0.00
coil 7.14 0.01
sugar 7.89 0.00

Table 8: Number of regimes tests (two vs. three 
regimes)-the multivariate model
Lag Standardized residuals Squared standardized 

residuals
Q*-statistic P-value Q*-statistic P-value

corn
5 0.083 0.81 0.019 0.88

sc
3 0.047 0.88 0.015 0.94

sboil
4 0.032 0.98 0 0.99

sfoil
4 0.051 0.69 0.036 0.82

poil
4 0.037 0.94 0.054 0.68

coil
5 0.065 0.78 0.046 0.74

sugar
4 0.043 0.91 0.022 0.94

Similar to Table 2

Table 9: Non-linear unit root tests (multivariate model)
Variable m t1 t2
poil 2 0.35 0.17
Δpoil 2 0.00 0.00
e 2 0.29 0.22
Δe 2 0.00 0.00
Similar to those in Table 3. Estimations stand for the inclusion of both constant and trend 
terms, m is the delay parameter, λ stands for the threshold variable, t1 stands for the unit 
root test in regime 1, t2 stands for the unit root test in regime 2

Table 10: Saikkonen and Lutkephol cointegration test 
results (multivariate model)
r0 LR P-value
corn

0 52.47 0
1 1.06 0.69

sc
0 58.72 0
1 1.13 0.71

sboil
0 63.49 0
1 0.76 0.91

sfoil
0 52.38 0
1 0.86 0.78

poil
0 50.23 0
1 1.02 0.82

coil
0 49.53 0
1 0.61 0.94

sugar
0 50.48 0
1 1.17 0.64

Similar to those in Table 5

variables under examination the no threshold effect hypothesis 
is strictly rejected in all cases, while for the variables in first 
differences, the bootstrap P-values are significant, implying that 
we should reject the null hypothesis of the unit root and accept 
stationarity of all the variables under study. According to the new 
results, the two new variables under examination are nonstationary 
in their levels across both regimes.

In the next level of the robustness analysis, we apply Saikkonen and 
Lütkepohl (2000a; 2000b; 2000c) cointegration tests that consider 
dummies with trend and intercept included into the cointegration 
relation. The null hypothesis of a no long-run relationship between 
biofuel prices and agricultural commodity prices is tested and the 
new results are reported in Table 10. The empirical results indicate 
that the null hypothesis of no cointegration is rejected at the 1% 
level of significance, thus, confirming the presence of a stable long-
run relationship between biofuel prices, agricultural commodity 
prices, oil prices and the US real exchange rate. In other words, 
once again long-run biofuel prices and agricultural commodity 
prices move together, with biofuel prices being mutually interacted 
with the prices of the primary agricultural commodities used for 
the production of biofuels.

Finally, Table 11 provides estimates of a TECM across all non-
energy (agricultural) commodity prices based on Hansen and 
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Table 11: Two-regime TECM results (multivariate model)
Corn equation regime I (ECt−1≤−4.16) II (ECt−1>−4.16) Wald-test
Constant −0.386 (−0.59) −0.894 (−0.71) [0.00]
ECt−1 −0.115 (−4.62)* −0.167 (−5.84)*
Δcornt−1 −0.310 (−4.19)* −0.360 (−4.72)*
Δcornt−2 −0.106 (−4.12)* −0.206 (−4.38)*
Δbiot−1 −0.211 (−4.05)* −0.194 (−5.52)*
Δbiot−2 −0.108 (−3.58)* −0.126 (−4.17)*
Δpoilt−1 0.188 (−4.26)* 0.198 (−5.24)*
Δpoilt−2 0.113 (−4.19)* 0.131 (−4.73)*
Δet−1 −0.175 (−4.61)* −0.190 (−5.62)*
Δet−2 −0.116 (−4.38)* −0.143 (−5.19)*
Sugarcane equation regime I (ECt−1≤−3.55) II (ECt−1>−3.55) Wald-test
Constant −1.263 (−1.02) −0.862 (−1.29) [0.01]
ECt−1 −0.125 (−4.42)* −0.178 (−6.13)*
Δsct−1 −0.274 (−4.66)* −0.380 (−5.25)*
Δsct−2 −0.161 (−4.52)* −0.294 (−5.48)*
Δsct−3 −0.101 (−4.61)* −0.163 (−4.58)*
Δbiot−1 −0.238 (−4.46)* −0.179 (−4.82)*
Δbiot−2 −0.151 (−4.27)* −0.128 (−4.21)*
Δbiot−3 −0.115 (−3.93)* −0.102 (−4.10)*
Δpoilt−1 0.255 (−4.72)* 0.241 (−5.29)*
Δpoilt−2 0.142 (−4.78)* 0.169 (−4.88)*
Δpoilt−3 0.101 (−3.96)* 0.115 (−4.32)*
Δet−1 −0.203 (−4.93)* −0.199 (−4.95)*
Δet−2 −0.142 (−4.75)* −0.122 (−4.18)*
Δet−3 −0.119 (−4.32)* −0.095 (−4.53)*
Soybean oil equation 
regime

I (ECt−1≤−3.78) II (ECt−1>−3.78) Wald-test

Constant −0.639 (−0.46) −0.915 (−0.82) [0.00]
ECt−1 −0.159 (−4.48)* −0.236 (−5.42)*
Δsboilt−1 −0.317 (−5.14)* −0.419 (−5.68)*
Δsboilt−2 −0.226 (−4.99)* −0.315 (−5.50)*
Δbiot−1 −0.251 (−4.82)* −0.197 (−4.68)*
Δbiot−2 −0.169 (−4.25)* −0.130 (−4.26)*
Δpoilt−1 0.184 (−4.68)* 0.191 (−5.11)*
Δpoilt−2 0.116 (−4.12)* 0.113 (−4.74)*
Δet−1 −0.203 (−5.15)* −0.219 (−5.63)*
Δet−2 −0.138 (−4.74)* −0.152 (−4.90)*
Sunflower oil equation 
regime

I (ECt−1≤−4.82) II (ECt−1>−4.82) Wald-test

Constant −0.837 (−0.52) −0.716 (−0.84) [0.00]
ECt−1 −0.149 (−4.48)* −0.183 (−4.81)*
Δsfoilt−1 −0.260 (−4.35)* −0.301 (−4.62)*
Δsfoilt−2 −0.171 (−4.30)* −0.252 (−4.49)*
Δbiot−1 −0.234 (−4.41)* −0.168 (−4.62)*
Δbiot−2 −0.157 (−4.19)* −0.132 (−4.26)*
Δpoilt−1 0.214 (−4.63)* 0.189 (−4.55)*
Δpoilt−2 0.152 (−4.27)* 0.131 (−4.19)*
Δet−1 −0.236 (−4.91)* −0.249 (−4.84)*
Δet−2 −0.149 (−4.30)* −0.182 (−4.25)*
Palm oil equation regime I (ECt−1≤−3.19) II (ECt−1>−1.19) Wald-test
Constant −0.438 (−0.62) −0.874 (−0.95) [0.00]
ECt−1 −0.146 (−4.39)* −0.192 (−4.65)*
Δpoilt−1 −0.316 (−4.94)* −0.359 (−5.16)*
Δpoilt−2 −0.229 (−4.18)* −0.236 (−4.70)*
Δbiot−1 −0.255 (−4.61)* −0.239 (−4.72)*
Δbiot−2 −0.138 (−3.56)* −0.127 (−4.12)*
Δpoilt−1 0.218 (−5.20)* 0.247 (−4.92)*
Δpoilt−2 0.157 (−4.39)* 0.163 (−4.71)*
Δet−1 −0.244 (−5.01)* −0.276 (−5.28)*
Δet−2 −0.140 (−4.92)* −0.158 (−4.49)*

(Contd...)



Apergis, et al.: Asymmetric Spillover Effects between Agricultural Commodity Prices and Biofuel Energy Prices

International Journal of Energy Economics and Policy | Vol 7 • Issue 1 • 2017 175

Table 11: (Continued)
Canelina oil equation 
regime

I (ECt−1≤−2.62) II (ECt−1>−2.62) Wald-test

Constant −0.914 (−0.75) −0.826 (−0.83) [0.01]
ECt−1 −0.159 (−4.62)* −0.204 (−5.16)*
Δcoilt−1 −0.268 (−4.37)* −0.291 (−4.75)*
Δcoilt−2 −0.159 (−4.23)* −0.211 (−4.18)*
Δcoilt−3 −0.102 (−4.04)* −0.119 (−3.84)*
Δbiot−1 −0.271 (−4.69)* −0.246 (−4.53)*
Δbiot−2 −0.138 (−4.13)* −0.147 (−4.14)*
Δbiot−3 −0.095 (−4.01)* −0.115 (−4.26)*
Δpoilt−1 0.292 (−4.94)* 0.303 (−5.14)*
Δpoilt−2 0.182 (−4.47)* 0.182 (−4.52)*
Δpoilt−3 0.124 (−4.30)* 0.128 (−4.65)*
Δet−1 −0.284 (−4.92)* −0.269 (−4.75)*
Δet−2 −0.163 (−4.52)* −0.179 (−4.48)*
Δet−3 −0.099 (−4.13)* −0.120 (−4.35)*
Sugar equation regime I (ECt−1≤−3.02) II (ECt−1>−3.02) Wald-test
Constant −0.436 (−0.66) −0.419 (−0.37) [0.00]
ECt−1 −0.261 (−5.14)* −0.299 (−5.26)*
Δsugart−1 −0.385 (−5.82)* −0.419 (−5.96)*
Δsugart−2 −0.286 (−5.14)* −0.295 (−4.81)*
Δbiot−1 −0.355 (−4.48)* −0.296 (−5.11)*
Δbiot−2 −0.263 (−4.19)* −0.225 (−4.68)*
Δpoilt−1 0.259 (−5.06)* 0.271 (−4.58)*
Δpoilt−2 0.214 (−4.68)* 0.225 (−4.09)*
Δet−1 −0.226 (−4.71)* −0.248 (−4.52)*
Δet−2 −0.178 (−4.19)* −0.216 (−4.18)*
Similar to those in Table 6. TECM: Threshold error correction model. *: significance at 1%

Seo (2002) methodological approach. To focus on the impact of 
biofuel prices on agricultural prices, the findings report only the 
estimations of the agricultural prices equations (the estimations 
for the remaining equations are available upon request).

Across all equations, the adjustment parameters are statistically 
significant, implying that biofuel energy prices, oil prices and 
the US real exchange rate drive agricultural prices toward the 
equilibrium level. Once again, the findings provide solid evidence 
that over the first regime period, the size of the EC coefficient 
indicates slower adjustment to long-run equilibrium vis-à-vis 
the EC coefficient over the second regime. In terms of the new 
control variables, oil prices are shown to exert a positive effect 
on agricultural prices, while a real appreciation of the dollar has a 
negative impact on those prices. These results are similar to those 
reached by Nazioglu and Soytas (2012). Overall, the findings from 
the multivariate model illustrate that the convergence process to 
long-run equilibrium is not uniform across both regimes, thus 
confirming the results from the bivariate model. However, now 
these findings include potential sources explaining the presence of 
such asymmetries, oil prices and a strong or a weak dollar, being 
the factors that drive biodiesel producers to change food prices 
when feedstocks become more or less expensive.

6. CONCLUSION

This empirical paper provided new empirical insights into the 
analysis of the causal relationships between biofuel energy prices 
and a number of commodity (agricultural) prices when considering 
a sample of daily prices.

A number of tests, able to capture the presence of any potential 
non-linearities, showed the presence of the non-linear nature of 
such price relations over the period under investigation. Threshold 
analysis displayed the presence of asymmetric movements in the 
prices between the two markets, supporting the role of a threshold 
defining two different regimes. In all cases, biofuel energy prices 
drive commodity prices, while the reverse is also true in the 
majority of the cases, to the long-run equilibrium. This non-linear 
association clearly documents that all commodity prices under 
examination are very vulnerable to biofuel energy price shocks 
compared to the past. At the same time, biofuel energy prices also 
receive influence from shocks occurring across all commodity 
markets used in this research paper. The results receive robust 
support from both a bivariate and a multivariate model in which 
both oil prices and the US real exchange rate are playing their own 
role in explaining the link between biofuels and agricultural prices.

The growth of the renewable (bio)fuels industry has had 
tremendous implications for agriculture commodity markets and 
opened up many new opportunities for agricultural commodity 
producers. In other words, our empirical findings highlighted 
the fact that agricultural policy makers need to consider the new 
role of agricultural crops and their new emerging role in forming 
the dynamics of biofuel energy prices. However, these new 
opportunities introduce new sources of risk as the market prices 
of agricultural commodities may become more dependent on 
fossil energy prices. Moreover, commodity oil traders and biofuel 
producers must reduce the risk associated with price fluctuations 
and, therefore, have to manage all different commodity oils (Liu, 
2008).
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A thorough understanding of the interrelationships among the 
prices of agricultural commodities and biofuel energy prices is 
essential for producers, policy makers and traders to make informed 
decisions. With respect to traders in international markets, the 
presence of our causality results imply informational benefits 
across markets that lead to stronger portfolio diversification, 
better forecasting ability, and, potentially, to higher profits. 
In addition, the increasing demand for biofuels is expected to 
stimulate the conversion of land-use from undisturbed ecosystem 
to biofuel-related crops, leading to higher levels of carbon debts, 
a fact expected to nullify the environmental benefit associated 
with renewable energy sources (Fargione et al., 2008). It is in 
association with this risk that has made the European Commission 
to propose a regulatory framework for biofuel, which exemplifies 
environmental sustainability along with biofuel production 
guidelines.

Moreover, the food inflation over the last years highlights the 
importance of a proactive inventory management policy as well 
as the need for mechanisms that usually compensate the poor 
when price increases reach abnormally high levels or alternatively 
tend to reduce spikes in prices. In that sense, the mechanisms 
essentially must adjust biofuel policies to any changes in food 
markets as well as to any changes in inventory management 
policies. In addition, agricultural supply should be further 
supported through a higher volume in research and development 
and mainly through the introduction of enhanced regulatory 
activities that allow the presence of more effective utilization of 
present technological approaches as well as more investments in 
outreach and infrastructure that lead to higher productivity, with 
the latter contributing to the deletion of food price spikes.

Finally, the asymmetric pattern we identified in the empirical 
section between biofuel energy and commodity prices is expected 
to play a substantial role in forming the properties of an efficient 
energy portfolio. In particular, even that non-renewable energy 
is cheaper vis-à-vis renewable energy, high non-renewable price 
fluctuations impose a risk on individuals as well as on societies. 
By contrast, the higher price stability with respect to renewable 
energy sources provides a clear benefit in forming less expensive 
energy portfolios (Awerbuch and Berger, 2003).

Far from being conclusive, this study allows us to open new 
research directions in the assessment of energy type policies and 
technological innovation in the energy sector. Future research 
should expand our analysis in terms of volatility. Further 
applications of this empirical framework could be the estimation 
of short and long-run causalities related to disaggregated sectors. 
Working with specific sectors allows the existence of divergent 
trends to be considered even in a quite homogeneous international 
commodity markets sample.
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Appendix 1: Data description
Definition Unit Time span
Biofuel energy prices (on a daily basis)
Fame (seasonal biodiesel) Liter 2007-2011
Agricultural commodity prices (on a daily basis)
Corn US US cents per bushel 2007-2011
Sugarcane (sc) Brazil US cents per pound 2007-2011
Soybean oil (sboil) Dutch ports $ per metric ton 2008-2011
Sunflower oil (sfoil) EU (NW EU ports) $ per metric ton 2008-2011
Palm oil (poil) Malaysia (Rotterdam) $ per metric ton 2007-2011
Camelina oil (coil) Any origin $ per metric ton 2007-2011
Sugar Brazil US cents per pound 2008-2011
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