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ABSTRACT

This study examines the out-of-sample value-at-risk forecasting performance of the generalised autoregressive conditional heteroscedasticity (GARCH), 
fractionally integrated GARCH (FIGARCH), hyperbolic GARCH (HYGARCH) and fractionally integrated, asymmetric power ARCH (FIAPARCH) 
models for West Texas intermediate crude oil, Europe Brent crude oil, heating oil#2, propane and New York Harbour Conventional Gasoline regular 
under the standard normal, student’s t and skewed student’s t distribution assumptions. Additionally, the expected shortfall is calculated in all cases. The 
results clearly show that the HYGARCH model under the normal distribution is the most accurate for short trading positions, whereas the FIGARCH 
model under the student’s t distribution is preferred for long trading positions. This further implies that it is important to consider downside and upside 
risk separately to obtain more accurate results.

Keywords: Fractionally Integrated Generalised Autoraegressive Conditional Heteroscedasticity Models, Value-at-risk, Expected Shortfall, Energy 
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1. INTRODUCTION

Since energy commodities are important industrial inputs, changes 
in energy prices can greatly impact the global economy (Sadorsky, 
2006). Thus, volatility in the energy market concerns policymakers, 
financial institutions and manufacturers. Considering the past 
15 years of commodity markets, we see that, especially after the 
1999–2000 period, such developments as the increasing demand 
of emerging markets, growing financialisation and liberalisation 
of commodity markets, 2007–2008 global financial crisis, 
increased speculative trading and global liquidity levels and 
fluctuations in the U.S. dollar have caused significant changes in 
energy commodity prices (Arouri et al., 2013; Fan and Xu, 2011; 
Sadorsky, 2006). These changes, in turn, have further increased 
the volatility of energy commodities. In such an environment, 
accurate measurements of the market risk of energy commodities 
have become more important.

Value-at-risk (VaR) is the major tool used in both the literature 
and practice to measure a portfolio’s market risk, defined as the 

maximum amount of loss to which a portfolio can be exposed 
due to market risk, with a given probability over a certain time 
horizon (Hendrics, 1996). Among various models of VaR, GARCH 
models are commonly used to measure the market risk of financial 
variables. GARCH models are able to successfully characterise the 
time series properties of financial data, such as heteroscedasticity, 
volatility clustering and time-varying conditional volatility 
(Bollerslev, 1986; Chkili et al., 2012). However, standard GARCH 
models have a key drawback: They suppose that volatility shocks 
decay at an exponential rate. In other words, they assume that 
the autocorrelation function of variance decreases quickly. 
Contrarily, however, the relevant literature reports that many 
financial assets, including energy commodities, exhibit volatility 
with long-memory properties. That is, a volatility shock in fact 
decays hyperbolically (Brunetti and Gilbert, 2000; Kang and 
Yoon, 2007; Kang and Yoon, 2013; Tabak and Cajueiro, 2007). 
Therefore, it may be appropriate to employ long-memory models, 
such as FIGARCH models, to better capture the stylised facts of 
financial time series.
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In fact, the recent literature has reported increasing numbers 
of studies examining the performance of FIGARCH models, 
applying these long-memory models to a wide range of financial 
assets from stock indices (Kang and Yoon, 2007; Mabrouk and 
Saadi, 2012; Tang and Shieh, 2006) to agricultural commodities 
(Baillie et al., 2007; Jin and Frechette, 2004). Briefly, the relevant 
literature generally concludes that compared with standard 
GARCH-type models, models that take into account long memory, 
fat tails and asymmetry may perform better. Among alternative 
long-memory GARCH-type models, the FIAPARCH model with 
skewed Student’s t distribution seems most appropriate choice 
(Aloui and Hamida, 2014; Aloui and Hamida, 2015; Arouri et 
al., 2012; Baillie et al., 2007; Bentes, 2015; Charfeddine, 2014; 
Degiannakis, 2004; Demiralay and Ulusoy, 2014; Kang et al., 
2009; Charfeddine, 2016; Mabrouk and Saadi, 2012; Wei et 
al., 2010; Youssef et al., 2015). However, especially for energy 
commodities, the relevant literature has some limitations. For 
example, although the volatility of energy commodities has 
greatly increased in recent years, as Baillie et al. (2007), Aloui 
and Mabrouk (2010) and Chkili et al. (2014) point out, only a 
few studies have examined the VaR performance of different 
FIGARCH models for energy commodity markets. Additionally, 
such studies have not compared the out-of-sample VaR forecasting 
performance of alternative long-memory GARCH-type models 
such as FIGARCH, FIAPARCH and HYGARCH models for 
energy commodities under the assumptions of normal, Student’s 
t and skewed student’s t distributions.

In this regard, the main aim of this study is to examine the 
out-of-sample VaR forecasting performance of the FIGARCH, 
FIAPARCH and HYGARCH models, under the assumptions 
of normal, student’s t and skewed student’s t distributions, for 
energy commodities including West Texas intermediate crude oil 
(WTI), Europe Brent crude oil (Brent), heating oil#2, propane 
and gasoline. The standard GARCH model is also included to 
compare the performance of short- and long-memory models. 
We concentrate on these models’ out-of-sample VaR forecasting 
performance because in-sample analysis can only demonstrate how 
a model has performed in the past; however, as commonly reported 
in the relevant literature, investors and financial institutions have 
greater need for a model that can forecast possible future losses 
(Tang and Shieh, 2006; Wang and Wu,2012).

This study contributes to the literature as follows. First, as 
mentioned above, only a few studies have examined the VaR 
performance of different FIGARCH models for energy commodity 
markets, despite such markets’ increasing volatility. Second, 
although the relevant literature commonly reports that fat tails and 
asymmetry are important stylised facts of financial time series, 
including those for energy commodities, most cases of parametric 
VaR analysis consider only the standard normal and Student’s t 
distribution assumptions, both of which are symmetric distributions 
(Fan et al., 2008). Therefore, this study additionally considers the 
skewed Student’s t distribution to capture these stylised facts more 
accurately. Third, the expected shortfall (ES), another important 
part of financial risk management, is also calculated to present how 
much a risk manager will lose on average when the relevant VaR 
model fails (Giot and Laurent, 2003). Fourth, because investors 

can take both long and short positions in financial markets and 
because markets contain both producers and purchases of energy 
commodities, both upside and downside risks are considered (Aloui 
and Mabrouk, 2010; Fan et al., 2008). Fifth, as Aloui and Mabrouk 
(2010) and Poon and Granger (2003) point out, the backtesting 
procedure is one of the most important parts of VaR analysis. 
Therefore, to obtain robust results, both the unconditional coverage 
backtest proposed by Kupiec (1995) and the conditional coverage 
backtest introduced by Engle and Manganelli (2004) are employed 
in this study to evaluate the models’ accuracies. Lastly, this study 
uses data covering the 2000–2015 period, capturing the various 
price phases experienced in the energy commodity markets1. This 
may further improve the performance of the models.

The rest of this paper is organised as follows. Section 2 outlines 
the data and methodology. Section 3 provides the empirical results, 
and Section 4 presents concluding remarks.

2. METHODOLOGY

The study uses the daily closing spot prices of WTI, Brent, 
heating oil#2, propane and New York Harbour Conventional 
Gasoline regular (gasoline) from 4 January 2000 to 4 August 
2015, comprising nearly 3920 observations for each commodity. 
Following the relevant literature, the data set is divided into two 
sub-periods, with the last 1000 observations kept for the out-
of-sample analysis. All daily prices are obtained from the U.S. 
Energy Information Administration. Continuously compounded 
daily returns (rt) are calculated as follows:

rt = 100*[ln(Pt)−ln(Pt−1)] (1)

Where Pt is the closing price on day t.

2.1. GARCH-type Models
The standard GARCH (p,q) model developed by Bollerslev (1986) 
can be written as follows:

rt = μ+εt, εt=σtϵt, ϵt~(0,1) (2)

h ht i t j t= + +− − ω α ε β0 1
2

1  (3)

Where ω0>0, αi>0, βj>0 and αi+βj<1. Equations (2 and 3) show 
the conditional mean and variance, respectively.

However, as mentioned previously, one drawback of the standard 
GARCH model is its lack of long-memory properties, namely it 
assumes that a volatility shock decays exponentially. Alternatively, 
Baillie et al. (1996) propose the FIGARCH (1,d,1) model, which 
includes a slow decay of volatility (long memory) and is given by.

1 For example, from the beginning of 2000 until the second half of 2008, 
there was a sustainable increase in energy commodity prices that can be 
identified as a boom stage. However, a sharp decline in energy commodity 
prices was observed during the second half of 2008. Then, prices began to 
recover from the beginning of 2009 to the second half of 2011. Between the 
second half of 2011 and late 2014, energy commodities experienced stable 
price movements; however, a sharp price decline was then observed in the 
market, stabilising around 50 U.S. dollars to date.
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h h L L Lt t
d

t= + + − − − − −
−ω β β φ ε0 1

1 21 1 1 1( ) ( )( )  (4)

Where ω0>0, β<1, ϕ<1 and 0≤d≤1. L is the lag operator. d is the 
fractional integrater parameter. The FIGARCH model has the 
advantage that, for 0<d<1, it flexibly allows an intermediate 
range of persistence. Thus, it nests the standard GARCH model 
when d=0 and nests the integrated GARCH (IGARCH) model 
when d=1.

Davidson (2004) propose another long-memory model, 
HYGARCH, which is a generalised form of the FIGARCH model. 
Davidson (2004) shows that this model allows the existence of 
second moments at more extreme amplitudes than do the simple 
IGARCH and FIGARCH models. The HYGARCH (1,d,1) model 
can be defined as follows:

h L L Lt

d

t= + − − + −( ) −





−ω β φ α ε0
1 21 1 1 1 1( ) ( ( )  (5)

The HYGARCH model nests the FIGARCH model if a=1 and 
nests the GARCH model if a=0.

Although the FIGARCH and HYGARCH models include long-
memory features, they do not cover asymmetry in volatility. 
To take this into account, Tse (1998) develops the FIAPARCH 
model, which considers both long memory and asymmetry in 
conditional variance. The FIAPARCH (1,d,1) model is written as.

h L L L Lt
d

t t
dδ ω β β φ ε γε= − + − − − −  −− −

0
1 11 1 1 1 1( ) ( ) ( )( ) ( )| |  

 (6)

Where ω0>0, δ>0,ϕ<1,β<1 and −1<γ<1. γ is the leverage 
coefficient. δ is the power term parameter. When γ>0 and is 
statistically significant, a negative shock affects conditional 
volatility more than would a positive shock of equal magnitude. 
However, when γ=0 and δ=2, the FIAPARCH model nests the 
FIGARCH model.

2.2. Likelihood Functions
As mentioned before, all GARCH-type models are estimated 
under the assumptions of Gaussian normal, student’s t and skewed 
student’s t distributions. In this regard, if the return series has a 
Gaussian normal distribution, the log-likelihood function(Lnrm) 
is given by.

L znrm

t

T

t t=− ( ) + + 
=
∑12 2

1

2 2ln ( )π σln  (7)

Where  t
2  is the variance, zt t

t
=ε σ  and T is the number of 

observations.

However, although the Gaussian normal distribution is commonly 
assumed because of its simplicity, it does not include the fat-tail 
phenomenon, which is a stylised fact of financial return series. 
Therefore, we also test the assumption of Student’s t distribution. 
If a return series has Student’s t distribution, the log-likelihood 
function (Lst) is written as follows:
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Where v is the degrees of freedom with v>2 and Γ(.) is the gamma 
function.

However, the student’s t distribution is also symmetric, whereas 
financial return series are asymmetric. Therefore, the skewed 
student’s t distribution proposed by Lambert and Laurent (2001) 
is also considered. If a return series has skewed student’s t 
distribution, the log-likelihood function(Lskwt) is defined as follows:
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Where k is the asymmetry parameter.

2.3. Evaluating the VaR Forecasting Performance of 
Alternative GARCH-type Models
To determine the most accurate GARCH-type model, we calculate 
the out-of-sample 1-day-ahead VaR performance for the various 
alternative models. VaR is calculated for both long and short 
trading positions at significance levels ranging from 5% to 0.25%. 
Under the normal distribution assumption, the 1-day-ahead VaR 
values for long and short trading positions are calculated as 
follows:

VaR zt long t t( ) = −µ σα ; VaR zt short t t( ) = − −µ σα1  (10)

Where μt is the mean conditional return, σt is the conditional 
standard deviation,zα denotes the left ath quantile and z(1-α) is the 
right(1-α)th quantile of the standard normal distribution.

Under the student’s t distribution assumption, the 1-day-ahead 
VaR forecasts are calculated as follows:

VaRt(long) = μt-stα,vσt; VaRt(short) = μt-st_1-α,vσt (11)

Where stα,v is the left ath quantile and st1-α,v is the right (1−α)th 
quantile of the student’s t distribution with v degrees of freedom.

Under the skewed student’s t distribution assumption, the 1-day-
ahead VaR forecasts are calculated as follows:

VaRt(long) = μt−skwtα,vσt; VaRt(short) = μt−skwt1-α,v σt (12)

Where skwtα,v is the left ath quantile and skwt1-α,v is the right (1-α)th 
quantile of the skewed student’s t distribution with v degrees of 
freedom.
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To measure the accuracy of the VaR forecasts of the alternative 
GARCH models, the Kupiec (1995) and dynamic quantile (DQ) 
tests developed by Engle and Manganelli (2004) are used. The 
Kupiec (1995) likelihood ratio unconditional coverage (LRuc) test 
is defined as follows:

LR f fuc
T N N T N N= − − − ∼− −2 1 2 1 1

2*ln[( ) ] *ln[( ) ] ( )α α χ  (13)

Where T is the sample size, N is the number of exceptions2, f is the 
exception rate (N/T)3 and (1−α) is the confidence level. The LRuc 
test measures whether the exception rate is statistically equal to 
the expected exception rate (α). In other words, the H0: f = α null 
hypothesis is tested against the alternative H1: f ≠ α hypothesis. 
If the null hypothesis can not be rejected, the relevant GARCH 
models’ VaR forecasts are accurate. However, the LRuc test 
ignores whether the exception rates are independently distributed. 
Therefore, Christofferson (1998) proposes a conditional coverage 
test to measure both whether exception rates are as expected and if 
they are randomly distributed. However, Christofferson’s (1998) 
test considers only first-order dependency, ignoring possible 
higher-order dependency between exceptions. As an alternative 
conditional coverage test, Engle and Manganelli (2004) develop 
the (DQ) test, which is more powerful than Christofferson’s (1998) 
test (Berkowitz et al., 2011) and is based on the following linear 
regression model:

Hit Hit VaRt i t ii k t t= + + +−= +∑ω ϑ ϑ η
1

5

1  (14)

Where variable Hitt(α) is defined as Ι(rt<−VaRα)−α and ϑi is the 
model parameter. The DQ test statistic is calculated as follows:

DQ
X Xt t

n=
− +

ϑ ϑ
α α

χ
( )

~ ( )
1

1
2  (15)

Where X  is the vector of the explanatory variables. The 
explanatory variables in Equation (14) consist of lagged values Hitt 
from 1 to 5 and the contemporaneous VaR (VaRt). n is the number 
of explanatory variables, six in this case. The null hypothesis is 
that the explanatory variables have no explanatory power at all, 
meaning that the exception rates are as expected and randomly 
distributed.

3. RESULTS

The descriptive statistics, unit root test results, ARCH results and 
long-memory test results for each energy commodity series are 
presented in Table 1. Panel A shows that all energy commodity 
return series, except that for propane, have positive mean values. 
Regarding the standard deviation, gasoline has the highest 
volatility, followed by propane. Additionally, all series are skewed, 
with excess kurtosis. Thus, the Jarque–Bera test rejects the null 
hypothesis of normal distribution. Panel B shows the results of 
Engle’s (1982) ARCH test and the Ljung–Box Q statistics applied 

2 The exception rate is the number of times returns exceed (in absolute value) 
the forecasted VaR in the sample.

3 The exception rate can also be defined as the failure rate. In this regard, 
1−f corresponds to the success rate. Since, in this paper, quantiles ranging 
from 0.95 to 0.9975 are used for short trading positions, success rates are 
reported in the tables where VaR results are presented.

to the squared return series using 12 lags. Both tests indicate that 
the return series have strong ARCH effects. To examine whether 
the energy commodity return series are stationary, the augmented 
Dickey and Fuller (1979) unit root test, Phillips and Perron (1988) 
unit root test and Kwiatkowski et al., (1992) stationary test are 
used. The results show that all the series are stationary (Panel 
C). To analyse whether daily returns and volatility have long-
memory characteristics, we employ the modified R/S test of Lo 
(1991) and the log- periodogram regression test of Geweke (1983) 
(GPH). The absolute and squared returns are used as proxies for 
volatility. The results of the long-memory tests clearly indicate 
that the energy commodity series exhibit long-memory properties 
in their volatility but short-memory properties in their returns 
(Panel D), findings that are consistent with the studies of Aloui 
and Mabrouk (2010) and Chkili et al. (2014). Briefly, all of these 
findings indicate that energy commodity return series have a non-
normal distribution, exhibiting volatility clustering, long memory 
and fat tails. Therefore, GARCH-type models should be used with 
the consideration of these stylised facts.

3.1. Estimation Results of GARCH-type Models
First, the standard GARCH model is estimated4. All conditional 
variance coefficients are significant at a 5% or better significance 
level for all cases. The sum of the ARCH and GARCH parameters 
is close to one, indicating a high degree of persistence in the 
conditional variance of all energy commodities. Table 2 provides 
the estimation results of the FIGARCH model. The fractional 
difference parameters d are statistically significant at a 5% or 
better significance level in all cases, taking values ranging from 
0.336 to 0.956. Similarly, the HYGARCH model also indicates 
(Table 3) that the long-memory parameters d are significant in 
all cases, ranging from 0.146 to 0.967. In addition, in all cases, 
the hyperbolic parameters Log(α ̃) are not statistically significant 
at conventional significance levels, meaning that the GARCH 
components are covariance stationary. Consistent with the previous 
two models, the results of the FIAPARCH model estimation also 
indicate that the fractional difference parameters d, ranging from 
0.226 to 0.982, are significant at a 5% significance level in all 
cases (Table 4). Additionally, the power terms δ are significant 
at a 5% significance level for all cases, with values ranging from 
1.592 to 2.287.

Further, the asymmetry parameters γ are found to be positive for 
WTI, Brent and gasoline, whereas they are negative for HT and 
propane. However, these values are statistically significant at 
conventional levels only for WTI and Brent, which means that the 
leverage effects are shown for WTI and Brent. That is, for those 
two energy commodities, negative shocks have a greater impact on 
conditional volatility than do positive shocks of equal magnitude. 
As for the assumptions of the student’s t and skewed student’s t 
distributions, the estimated tail parameters (ν) are found to be 
statistically significant at a 10% or better significance level in all 
cases, indicating fat-tail phenomena. In addition, the asymmetric 
parameters (ζ) are found to be negative in all cases except for HT; 
notably, however, these parameters are statistically significant only 

4 For simplicity, the results are not presented here but are available upon 
request. Hereafter, the nrm, st and skw t symbols are used for the standard 
normal, Student’s t and skewed Student’s t distributions, respectively.
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for WTI, Brent and gasoline, implying that those respective return 
series are skewed to the left.

As diagnostic checks, we use Tse’s (2002) residual-based 
diagnostics (RBD) test, Engle’s (1982) ARCH test and Ljung–
Box Q statistics using 12 lags. Except for gasoline and HT, 
at least two test statistics in each case provide evidence that 
all models are capable of capturing the ARCH effects for all 
energy commodities at the 5% and/or 1% significance levels. 
However, the results are mixed for gasoline and HT because, 

for example, while the RBD test indicates that all models 
succeeded in capturing the ARCH effect for gasoline, the other 
two tests indicate that the standard GARCH model under all 
three distribution assumptions and the FIAPARCH model under 
the Student’s t and skewed Student’s t distribution assumptions 
can not eliminate the ARCH effect at conventional significance 
levels. However, as is well known, the general approach in the 
relevant literature is based on the principle that models should 
be selected according to their forecasting performance rather 
than their goodness-of-in-sample-fit.

Table 1: Statistics, unit root test results and long-memory test results for the return series
WTI Gasoline Heating oil Propane Brent

Panel A: Summary statistics (%)
Mean 0.0148 0.0252 0.0184 −0.0030 0.0181
Median 0.0857 0.0476 0.0000 0.0000 0.0422
Maximum 16.414 23.505 22.954 17.673 18.129
Minimum −17.092 −17.889 −47.012 −49.912 −19.891
SD 2.4501 2.7493 2.6113 2.6236 2.2370
Skewness −0.2512 0.0425 −1.6745 −2.7103 −0.2598
Kurtosis 7.7248 7.4329 45.756 54.7674 8.8075
Jargue-Bera 3680.94* 3205.05* 299881.1* 440929.1* 5602.4*
Panel B: ARCH effects tests 
Q2 (12) 1220.2* 1239.7* 1748.9* 155.00* 501.630*
ARCH (12) 44.424* 70.762* 131.262* 10.024* 22.564*
Panel C: Unit root tests
ADF −64.6050* −60.9658* −63.4844* −40.8435* −61.8202*
PP −64.6525* −60.9459* −63.5972* −60.1718* −61.8327*
KPSS  0.1942 0.08820 0.1699 0.245314 0.20590
Panel D: long memory tests
GPH test
Return
m=T0.5 0.1099 (0.223) −0.0558 (0.536) 0.0947 (0.297) −0.0934 (0.305) 0.0578 (0.521)
m=T0.6 0.0847 (0.138) 0.0886 (0.120) −0.0127 (0.824) 0.0783 (0.170) 0.0527 (0.354)
m=T0.7 −0.0302 (0.412) −0.0164 (0.656) 0.0046 (0.898) 0.0101 (0.783) 0.0243 (0.507)
m=T0.8 0.0345 (0.154) −0.0217 (0.370) −0.0268 (0.267) −0.0076 (0.750) 0.0406 (0.092)
Squared return
m=T0.5 0.6334*(0.000) 0.2759*(0.002) 0.0572 (0.525) 0.0902 (0.321) 0.7075*(0.000)
m=T0.6 0.4365*(0.000) 0.1934*(0.000) 0.1135*(0.046) 0.1449*(0.011) 0.3488*(0.000)
m=T0.7 0.2907*(0.000) 0.1979*(0.000) 0.2856*(0.000) 0.1215*(0.001) 0.2001*(0.000)
m=T0.8 0.2625*(0.000) 0.3175*(0.000) 0.4059*(0.000) 0.1324*(0.000) 0.1956*(0.000)
Absolute return
m=T0.5 0.7079*(0.000) 0.5920*(0.000) 0.2699*(0.003) 0.3560*(0.000) 0.676*(0.000)
m=T0.6 0.4970*(0.000) 0.4096*(0.000) 0.2818*(0.000) 0.3737*(0.000) 0.4280*(0.000)
m=T0.7 0.3415*(0.000) 0.3097*(0.000) 0.3863*(0.000) 0.3579*(0.000) 0.2989*(0.000)
m=T0.8 0.2715*(0.000) 0.2543*(0.000) 0.3842*(0.000) 0.3160*(0.000) 0.2244*(0.000)
Lo’s (1991) R/S test
Return
q=1 1.2404 0.9798 1.1504 1.2267 1.3098
q=2 1.2556 0.9774 1.1449 1.1962 1.2998
q=5 1.2552 0.9959 1.1694 1.1812 1.2855
Squared return
q=1 3.8504* 4.0856* 2.0345* 2.1939* 3.9223*
q=2 3.5867* 3.7503* 2.1976* 2.1167* 3.7620*
q=5 3.0285* 3.1746* 1.6763 1.9425* 3.2923*
Absolute return
q=1 5.5656* 6.4115* 5.9794* 4.0204* 5.0167*
q=2 5.1404* 5.9935* 5.3979* 3.6611* 6.2412*
q=5 4.2939* 5.1257* 4.3689* 3.0580* 5.8780*
q denotes the lag parameters used for Lo’s (1991) R/S test. m denotes the bandwidth for the GPH test. *Denotes the 5% significance level. The ARCH (12) statistic is Engle’s (1982) 
ARCH test applied to the squared return series using 12 lags under the null hypothesis of “no ARCH effect.” Q2 (12) are the Ljung–Box Q-statistics applied to the squared return series 
using 12 lags under the null hypothesis of “no ARCH effect.” Figures in parentheses for the GPH test are the probability values. Both GPH and Lo’s (1991) R/S test have the null 
hypothesis of no long memory. SD: Standard deviation
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3.2. Analysis of Out-of-sample VaR Forecasting
In this subsection, the out-of-sample 1-day-ahead VaR performance 
of the GARCH, FIGARCH, FIAPARCH and HYGARCH models 
is examined under the normal, student’s t and skewed student’s t 
distribution assumptions for each energy commodity return series. 
This out-of-sample analysis covers the past 4 years, comprising 
1000 observations for each series. In the VaR calculations, quantiles 
ranging from 0.95 to 0.9975 are used for long trading positions 
and those from 0.05 to 0.0025 are used for short trading positions. 
GARCH models are re-estimated every 50 observations. Then, 
the forecasted 1-day-ahead VaR forecasts are compared with the 
observed returns; both results are recorded for later assessment 
using the Kupiec (1995) and  DQ tests. The results are presented 
in Tables 5-95.

At the 5% significance level, regarding short trading positions, the 
LRuc test results show that the HYGARCH-nrm and FIGARCH-

5 For simplicity, the results of the GARCH model are not presented here but 
are available upon request.

nrm models are the most accurate. In all 25 cases, both models 
have seven rejections, while the HYGARCH-skw t model has eight 
rejections. At the 10% significance level, the HYGARCH-nrm 
model is the best, with 10 rejections, followed by the FIGARCH-
nrm and FIAPARCH-nrm models, each with 12 rejections. At 
the 5% and 10% significance levels, the results of the DQ test 
show that the most accurate models are HYGARCH-nrm and 
HYGARCH-skw t, because each has the fewest rejections (six) 
at both significance levels. Taking these results together, the 
HYGARCH model with the assumption of normal distribution is 
clearly the most appropriate.

At the 5% significance level, regarding long trading positions, 
the results of the LRuc test indicate that the FIGARCH-st, 
FIAPARCH-st and FIGARCH-skw t models are the most 
appropriate, with only one rejection each in all 25 cases. At the 
10% significance level, the FIGARCH-st model alone is the best, 
with the fewest rejections (two). At the 5% and 10% significance 
levels, the results of the DQ test show that the FIGARCH-st, 

Table 2: Results of the FIGARCH model estimation
Model WTI Gasoline Heating oil Propane Brent 
FIGARCH-nrm
μ (mean) 0.0559** 0.0477 0.0469 0.0743* 0.0386
ω0 (variance) 0.1123 0.2979* 0.0917* 0.2170** 0.1210**
d (long memory) 0.4249* 0.3395* 0.5363* 0.7182** 0.4339*
φ1 (ARCH) 0.4417* 0.2781* 0.3065* 0.1740 0.1586**
β1 (GARCH) 0.7206* 0.5145* 0.7045* 0.6743* 0.5714*
LL −8594.94 −9152.51 −8616.27 −8352.494 −8366.56
AIC 4.3956 4.6806 4.3554 4.2793 4.2334
Q2 (12) 0.2420 0.0935 0.2910 0.9991 0.2581
ARCH (12) 0.3575 0.1961 0.2868 0.9999 0.4024
RBD (12) 0.5889 1.0000 0.5844 0.9989 0.3278
FIGARCH – st
μ ( mean) 0.0739* 0.0728* 0.0380 0.0867* 0.0514**
ω0 (variance) 0.0806* 0.2701* 0.1051* 0.2054* 0.0998*
d (long memory) 0.4511* 0.3371* 0.4074* 0.9565* 0.4069*
φ1 (ARCH) 0.3996* 0.2702* 0.3213* 0.0546 0.2406*
β1 (GARCH) 0.7344* 0.5253* 0.6138* 0.7922* 0.6232*
v (tail) 7.0562* 8.8520* 8.5228* 3.8289* 7.2054*
LL −8494.64 −9103.21 −8449.602 −8085.78 −8282.51
AIC 4.34482 4.6558 4.3218 4.1432 4.1914
Q2 (12) 0.0909 0.0034* 0.0870 0.9992 0.1863
ARCH (12) 0.1601 0.0126* 0.0978 0.9999 0.2500
RBD (12) 1.0000 1.0000 0.0000* 0.9930 0.9614
FIGARCH-skw t
μ (mean) 0.0482 0.0538 0.0421 0.0828* 0.0278
ω0 (variance) 0.0787* 0.2660* 0.1058* 0.2059* 0.0922*
d (long memory) 0.4502* 0.3358* 0.4087* 0.9555* 0.4086*
φ1 (ARCH) 0.3924* 0.2723* 0.3203* 0.0552 0.2428*
β1 (GARCH) 0.7296* 0.5258* 0.6141* 0.7916* 0.6290*
v (tail) 7.2033* 8.9122* 8.4709* 3.8292* 7.3795*
ζ (asymmetry) −0.0700* −0.0564* 0.0146 −0.0048 −0.0639*
LL −8489.87 −9100.026 −8449.40 −8085.76 −8278.21
AIC 4.3428 4.6548 4.3222 4.1437 4.1897
Q2 (12) 0.0889 0.0034* 0.0872 0.9992 0.1711
ARCH (12) 0.1581 0.0128* 0.0980 0.9999 0.2303
RBD (12) 0.9985 1.0000 0.0000* 0.9930 0.9547
*And**denote the 5% and 10% significance levels, respectively. The ARCH (12) statistic is Engle’s (1982) ARCH test applied to the standardised residuals using 12 lags under the 
null hypothesis of “no ARCH effect.” Q2 (12) are the Ljung–Box Q statistics applied to the squared standardised residuals using 12 lags under the null hypothesis of “no ARCH effect” 
RBD (12) is Tse’s (2002) residual-based diagnostic for conditional heteroscedasticity applied using 12 lags for the null hypothesis of “no ARCH effect.” Figures for Q2 (12), ARCH (12) 
and RBD (12) test statistics are the probability values. LL is the value of maximised log likelihood. AIC is the information criterion
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FIGARCH-skw t, HYGARCH-st and the HYGARCH-skw t 
models are the most accurate. Taking these results together, the 
FIGARCH-st model performs better than the others, although, 
notably, the results also indicate that the FIGARCH-skw t model 
performs rather closely to FIGARCH-st.

Additionally, the results also indicate that the worst models for 
short trading positions are the GARCH-st and GARCH-skw 
t models, followed by the FIGARCH-st, FIAPARCH-st and 
HYGARCH-st models. For long trading positions, by contrast, all 
long- and short-memory GARCH models under the assumption 
of normal distribution are found to have poor performance. 
Although the results suggest that the most accurate models for 
both long and short trading positions are long-memory GARCH-
type models, long-memory GARCH models do not outperform 
short-memory GARCH models in all cases. For example, for short 
trading positions at both the 5% and the 10% significance levels, 

the results of the LRuc test indicate that the GARCH-nrm model 
has better performance than the FIGARCH-st, FIAPARCH-st 
and HYGARCH-st models. Similarly, for long trading positions, 
at the two relevant significance levels, the results of the DQ 
test indicate that the GARCH-st and GARCH-skw t models 
outperform the FIGARCH-nrm, HYGARCH-nrm, FIAPARCH-
nrm, FIAPARCH-st and FIAPARCH-skw t models.

Regarding the distribution assumptions, the results clearly indicate 
that the normal distribution performs the best for short trading 
positions, followed by the skewed Student’s t and Student’s t 
distributions. For example, at the 10% significance level based on 
the LRuc test, the standard normal distribution has 34 rejections, 
while the skewed Student’s t and Student’s distributions have 43 
and 47 respective rejections in all 75 cases. By contrast, for long 
trading positions, the findings indicate that both the student’s t 
and the skewed Student’s t distributions are the most appropriate 

Table 3: Results of the HYGARCH model estimation
Model WTI Gasoline Heating oil Propane Brent 
HYGARCH-nrm
μ ( mean) 0.0558** 0.0440 0.0470 0.0717* 0.0382
ω0 (variance) 0.0953 0.0708 0.1119** 0.2586 0.0427
d (long memory) 0.4056* 0.1952* 0.5532* 0.8990* 0.3392*
φ1 (ARCH) 0.4519* 0.2502 0.2950* 0.0877 0.1290
β1 (GARCH) 0.7170* 0.3912* 0.7066* 0.7607* 0.4752*
Log(α ̃) (hyperbolic) 0.0145 0.2345 −0.0136 −0.0409 0.0754
LL −8594.81 −9149.38 −8515.95 −8347.25 −8364.34
AIC 4.3960 4.6795 4.3557 4.2771 4.2327
Q2 (12) 0.2606 0.1535 0.2608 0.9989 0.2597
ARCH (12) 0.3801 0.2757 0.2649 0.9998 0.4312
RBD (12) 0.5925 0.8861 0.0026* 0.9997 0.4322
HYGARCH – st
μ ( mean) 0.0737* 0.0706* 0.0379 0.0862* 0.0495**
ω0 (variance) 0.0572 −0.0346 0.1010** 0.2140* 0.0243
d (long memory) 0.4212* 0.1588* 0.4017* 0.9666* 0.3084*
φ1 (ARCH) 0.4139* 0.2267 0.3229* 0.0484 0.2461*
β1 (GARCH) 0.7267* 0.3676* 0.6109* 0.7954* 0.5602*
Log(α ̃) (hyperbolic) 0.0200 0.3498 0.0041 −0.0176 0.0899
v (tail) 6.9597* 8.4714* 8.4938* 4.0228* 6.9050*
LL −8494.436 −9099.09 −8449.59 −8085.14 −8280.54
AIC 4.3452 4.6543 4.3223 4.1434 4.1909
Q2 (12) 0.1203 0.0077* 0.0864 0.9992 0.2208
ARCH (12) 0.2016 0.0221* 0.0966 0.9999 0.3062
RBD (12) 0.9998 0.9998 0.0000* 0.9992 0.6315
HYGARCH skw-t
μ ( mean) 0.0471 0.0476 0.0420 0.0813* 0.0227
ω0 (variance) 0.0532 −0.0688 0.1025** 0.2151* 0.0079
d (long memory) 0.4182* 0.1457* 0.4044* 0.9656* 0.2994*
φ1 (ARCH) 0.4073* 0.2202 0.3215* 0.0490 0.2492*
β1 (GARCH) 0.7211* 0.3530* 0.6118* 0.7947* 0.5597*
Log(α ̃) (hyperbolic) 0.0216 0.4015 0.0032 −0.0180 0.1018
v (tail) 7.0948* 8.5080* 8.4518* 4.0278* 7.0379*
ζ (asymmetry) −0.0707* −0.0632* 0.0145 −0.0065 −0.0687*
LL −8489.63 −9095.275 −8449.39 −8085.09 −8275.76
AIC 4.3432 4.6528 4.3227 4.1439 4.1890
Q2 (12) 0.1195 0.0081* 0.0868 0.9999 0.2084
ARCH (12) 0.2013 0.0229* 0.0971 0.9999 0.2915
RBD (12) 0.9774 0.9999 0.0000* 0.9993 0.5634
*And **denote the 5% and 10% significance levels, respectively. The ARCH (12) statistic is Engle’s (1982) ARCH test applied to the standardised residuals using 12 lags under the 
null hypothesis of “no ARCH effect”. Q2 (12) are the Ljung–Box Q statistics applied to the squared standardised residuals using 12 lags under the null hypothesis of “no ARCH effect”. 
RBD (12) is Tse’s (2002) residual-based diagnostic for conditional heteroscedasticity applied using 12 lags for the null hypothesis of “no ARCH effect”. Figures for Q2 (12), ARCH (12) 
and RBD (12) test statistics are the probability values. LL is the value of maximised log likelihood. AIC is the information criterion
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distribution assumptions, with the normal distribution showing 
the worst performance.

Moreover, the results also reveal that compared with short trading 
positions, the models are generally more successful in forecasting 
VaR for long trading positions. In other words, it seems that the 
models are better at capturing downside risk than upside risk. 
For example, considering the DQ test at the 10% significance 
level, while rejections range between 6 and 13 for short trading 
positions across different models, they range between 2 and 4 for 
long trading positions. The findings further reveal that models 
have quite different performance across long and short trading 
positions, meaning that downside and upside risk should be 
considered separately for more accurate results.

4. CONCLUSION

The increasing volatility of energy commodities has gained 
attention in both the literature and practice, with forecasting such 
volatility and measuring the market risk of energy commodities 
more accurately becoming important for financial institutions 
and investors. In this study, we examine the out-of-sample 
VaR forecasting performance of the FIGARCH, FIAPARCH 
and HYGARCH models under the assumptions of the normal, 
Student’s t and skewed Student’s t distributions for various energy 
commodities (WTI, Brent, heating oil#2, propane and gasoline). 
Additionally, we include the standard GARCH model to compare 
the performance of short- and long-memory models.

Table 4: Results of the FIAPARCH model estimation
Model WTI Gasoline Heating oil Propane Brent 
FIAPARCH-nrm
μ ( mean equation) 0.0295 0.0421 0.0475 0.0827* 0.0135
ω0 (variance equation) 0.1178 0.2393 0.1235* 0.2393 −0.0627
d (long memory) 0.4032* 0.2939* 0.5408* 0.6604* 0.2261*
φ1 (ARCH) 0.4734* 0.2686* 0.2941* 0.1857* 0.0158
β1 (GARCH) 0.7256* 0.4636* 0.7012* 0.6468* 0.2093
γ (APARCH asymmetry) 0.2398* 0.0322 −0.0105 −0.0552 0.3738*
δ (APARCH power) 1.8224* 2.1719* 1.8273* 1.7596* 2.2002*
LL −8584.30 −9151.67 −8514.40 −8345.59 −8335.94
AIC 4.3912 4.6811 4.3554 4.2768 4.2189
Q2 (12) 0.2589 0.1194 0.1678 0.9974 0.1575
ARCH (12) 0.3824 0.2339 0.1823 0.9994 0.2767
RBD (12) 0.9999 0.9999 0.6757 0.9986 0.2135
FIAPARCH –st
μ ( mean equation) 0.0592* 0.0646** 0.0391 0.0873* 0.0426
ω0 (variance equation) 0.0936** 0.1360 0.1406* 0.1398 −0.0087
d (long memory) 0.4065* 0.2600* 0.4437* 0.9822* 0.2472*
φ1 (ARCH) 0.4263* 0.2505* 0.3129* 0.0515 0.2293**
β1 (GARCH) 0.7167* 0.4357* 0.6416* 0.8307* 0.4419*
γ (APARCH asymmetry) 0.2899* 0.0946 −0.0026 −0.0077 0.3178*
δ (APARCH power) 1.7802* 2.2641* 1.8018* 1.5919* 2.1622*
v (tail) 7.2185* 8.5694* 8.8260* 4.0511* 7.5790*
LL −8486.496 −9100.54 −8447.75 −8082.81 −8269.47
AIC 4.3416 4.6555 4.3218 4.1427 4.1858
Q2 (12) 0.8103 0.0016* 0.0209* 0.9983 0.1472
ARCH (12) 0.2206 0.0058* 0.0315* 0.9996 0.2338
RBD (12) 0.9999 0.9999 0.9999 0.9992 0.3236
FIAPARCH skw-t
μ ( mean equation) 0.0301 0.0421 0.0433 0.0826* 0.0189
ω0 (variance equation) 0.1002** 0.1144 0.1412* 0.1408 −0.0205
d (long memory) 0.4048* 0.2534* 0.4452* 0.9792* 0.2426*
φ1 (ARCH) 0.4203* 0.2483* 0.3118* 0.0532 0.2240
β1 (GARCH) 0.7116* 0.4277* 0.6421* 0.8294* 0.4344*
γ (APARCH asymmetry) 0.3206* 0.1068 −0.0042 −0.0087 0.3224*
δ (APARCH power) 1.7558* 2.2867* 1.8008* 1.5923* 2.1878*
v (tail) 7.4310* 8.5917* 8.7748 4.0536* 7.7905*
ζ(asymmetry) −0.0799* −0.0625* 0.0152 −0.0064 −0.0694*
LL −8480.32 −9096.75 −8447.52 −8082.76 −8264.5
AIC 4.3390 4.6541 4.3223 4.1432 4.1838
Q2 (12) 0.1272 0.0011* 0.0219* 0.9983 0.1449
ARCH (12) 0.2202 0.0042* 0.0331* 0.9997 0.2328
RBD (12) 0.9999 0.9999 0.9999 0.9991 0.3133
*And **denote the 5% and 10% significance levels, respectively. The ARCH (12) statistic is Engle’s (1982) ARCH test applied to the standardised residuals using 12 lags under the 
null hypothesis of “no ARCH effect”. Q2 (12) are the Ljung–Box Q statistics applied to the squared standardised residuals using 12 lags under the null hypothesis of “no ARCH effect”. 
RBD (12) is Tse’s (2002) residual-based diagnostic for conditional heteroscedasticity applied using 12 lags for the null hypothesis of “no ARCH effect”. Figures for Q2 (12), ARCH (12) 
and RBD (12) test statistics are the probability values. LL is the value of maximised log likelihood. AIC is the information criterion
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Quantiles Short trading position Long trading position
1-f LRuc DQ ES f LRuc DQ ES

FIGARCH-nrm
0.9500 0.0500 0.9660 0.0140* 0.0889 3.945 0.0440 0.3745 0.3454 −4.193
0.9750 0.0250 0.9860 0.0152* 0.0423* 4.579 0.0300 0.3259 0.6407 −4.784
0.9900 0.0100 0.9970 0.0089* 0.0000* 8.135 0.0150 0.1389 0.8250 −5.271
0.9950 0.0050 0.9980 0.1258 0.6054 8.495 0.0100 0.0486* 0.8012 −5.789
0.9975 0.0025 0.9980 0.7428 0.9999 8.495 0.0080 0.0057* 0.6564 −6.054
FIGARCH-st
0.9500 0.0500 0.9630 0.0484* 0.1309 3.923 0.0510 0.8850 0.4301 −4.049
0.9750 0.0250 0.9920 6.1E-05* 2.E-09* 5.499 0.0280 0.5509 0.5796 −4.802
0.9900 0.0100 0.9980 0.0019* 1.6E-05* 8.496 0.0130 0.3621 0.9509 −5.245
0.9950 0.0050 0.9990 0.0285* 0.0136* 9.001 0.0070 0.3979 0.9912 −6.471
0.9975 0.0025 0.9990 0.2795 0.8945 9.001 0.0040 0.3826 0.9956 −7.608
FIGARCH- skw t
0.9500 0.0500 0.9620 0.0695 0.1531 3.906 0.0460 0.5565 0.4607 −4.115
0.9750 0.0250 0.9860 0.0152* 0.0423* 4.579 0.0270 0.6892 0.5736 −4.895
0.9900 0.0100 0.9980 0.0019* 1.6E-05* 8.4966 0.0090 0.7465 0.9973 −5.987
0.9950 0.0050 0.9980 0.1257 0.6054 8.496 0.0060 0.6638 0.9992 −6.971
0.9975 0.0025 0.9990 0.2795 0.8946 9.001 0.0040 0.3826 0.9956 −7.608
FIAPARCH-nrm
0.9500 0.0500 0.9670 0.0087* 0.0203* 3.901 0.0430 0.2985 0.5915 −4.378
0.9750 0.0250 0.9860 0.0152* 0.0423* 4.542 0.0270 0.6892 0.4913 −4.904
0.9900 0.0100 0.9970 0.0089* 0.0000* 8.135 0.0160 0.0794 0.7246 −5.508
0.9950 0.0050 0.9980 0.1257 0.6054 8.496 0.0090 0.1071 0.8979 −5.987
0.9975 0.0025 0.9980 0.7428 0.9999 8.496 0.0080 0.0057* 0.6564 −6.054
FIAPARCH-st
0.9500 0.0500 0.9670 0.0008* 0.0203* 4.015 0.0460 0.5565 0.6214 −4.313
0.9750 0.0250 0.9910 0.0002* 3.9E-07* 4.822 0.0230 0.6814 0.8440 −5.071
0.9900 0.0100 0.9980 0.0019* 1.6E-05* 8.496 0.0120 0.5377 0.9807 −5.856
0.9950 0.0050 0.9990 0.0285* 0.0136* 9.001 0.0060 0.6638 0.9992 −6.971
0.9975 0.0025 0.9990 0.2795 0.8946 9.001 0.0040 0.3826 0.9956 −7.608
FIAPARCH- skw t
0.9500 0.0500 0.9620 0.0695 0.1467 3.849 0.0400 0.1333 0.2712 −4.451
0.9750 0.0250 0.9840 0.0512 0.2059 4.455 0.0210 0.4049 0.7815 −5.218
0.9900 0.0100 0.9970 0.0089* 0.0000* 8.135 0.0100 0.9999 0.9974 −6.293
0.9950 0.0050 0.9990 0.0285* 0.0136* 9.001 0.0040 0.6422 0.9993 −7.608
0.9975 0.0025 0.9990 0.2795 0.8946 9.001 0.0030 0.7589 0.9999 −8.417
HYGARCH-nrm
0.9500 0.0500 0.9650 0.0217* 0.1280 3.887 0.0460 0.5565 0.4607 −4.109
0.9750 0.0250 0.9850 0.0288* 0.1051 4.421 0.0290 0.4293 0.5554 −4.813
0.9900 0.0100 0.9970 0.0089* 0.0000* 8.135 0.0160 0.0794 0.7246 −5.072
0.9950 0.0050 0.9980 0.1258 0.6054 8.496 0.0110 0.0203* 0.6819 −5.497
0.9975 0.0025 0.9980 0.7428 0.9999 8.496 0.0080 0.0057* 0.6564 −6.054
HYGARCH-st
0.9500 0.0500 0.9640 0.0328* 0.0897 3.909 0.0520 0.7730 0.4578 −4.052
0.9750 0.0250 0.9890 0.0014* 0.0003* 4.867 0.0280 0.5509 0.5796 −4.802
0.9900 0.0100 0.9980 0.0019* 1.6E-05* 8.496 0.1200 0.5377 0.9807 −5.341
0.9950 0.0050 0.9990 0.0285* 0.0136* 9.001 0.0080 0.2162 0.9613 −6.054
0.9975 0.0025 0.9990 0.2795 0.8946 9.001 0.0040 0.3826 0.9956 −7.608
HYGARCH- skw t 
0.9500 0.0500 0.9620 0.0695 0.1531 3.927 0.0450 0.4608 0.4068 −4.156
0.9750 0.0250 0.9850 0.0288* 0.1051 4.421 0.0270 0.6892 0.5736 −4.895
0.9900 0.0100 0.9980 0.0019* 1.6E-05* 8.496 0.0100 1.0000 0.9974 −5.788
0.9950 0.0050 0.9980 0.1258 0.6054 8.496 0.0060 0.6638 0.9992 −6.971
0.9975 0.0025 0.9990 0.2795 0.8946 9.001 0.0040 0.3826 0.9956 -7.608
*Denotes the 5% significance level. Figures for LRuc and LRcc test statistics are probability values

Table 5: Out-of-sample VaR forecasting performance and ES values of the models for WTI 
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Quantiles Short trading position Long trading position
1-f LRuc DQ ES f LRuc DQ ES

FIGARCH-nrm
0.9500 0.0500 0.9770 1.3E-05* 7.9E-07* 3.860 0.0540 0.5664 0.8464 −3.289
0.9750 0.0250 0.9860 0.0152* 0.0430* 4.364 0.0320 0.1738 0.5440 −3.918
0.9900 0.0100 0.9950 0.0786 1.6E-08* 5.973 0.0160 0.0794 0.2066 −4.468
0.9950 0.0050 0.9980 0.1258 0.6054 6.343 0.0120 0.0078* 0.1055 −4.969
0.9975 0.0025 0.9990 0.2795 0.8946 8.508 0.0060 0.0607 0.8988 −5.979
FIGARCH-st
0.9500 0.0500 0.9760 2.9E-05* 5.2E-06* 3.826 0.0580 0.2571 0.2465 −3.255
0.9750 0.0250 0.9880 0.0034* 0.0025* 4.615 0.0310 0.2411 0.5438 −4.013
0.9900 0.0100 0.9970 0.0089* 0.0116* 6.575 0.0120 0.5377 0.3526 −4.969
0.9950 0.0050 0.9990 0.0285* 0.0136* 8.508 0.0060 0.6638 0.9993 −5.979
0.9975 0.0025 0.9990 0.2795 0.8946 8.508 0.0040 0.3826 0.9958 −6.595
FIGARCH- skw t
0.9500 0.0500 0.9690 0.0031* 0.0131* 3.550 0.0540 0.5665 0.3834 −3.323
0.9750 0.0250 0.9850 0.0288* 0.1063 4.234 0.0280 0.5509 0.7391 −4.120
0.9900 0.0100 0.9970 0.0089* 0.0116* 6.575 0.0090 0.7465 0.9978 −5.414
0.9950 0.0050 0.9990 0.0285* 0.0136* 8.508 0.0050 1.000 0.9999 −6.309
0.9975 0.0025 0.9990 0.2795 0.8946 8.508 0.0040 0.3826 0.9958 −6.596
FIAPARCH-nrm
0.9500 0.0500 0.9790 2.2E-06* 8.02E-09* 3.919 0.0530 0.6663 0.9572 −3.288
0.9750 0.0250 0.9860 0.0152* 0.0001* 4.468 0.0350 0.0558 0.6214 −3.785
0.9900 0.0100 0.9950 0.0785 0.5239 5.078 0.0140 0.2306 0.9035 −4.645
0.9950 0.0050 0.9990 0.0285* 0.0136* 8.508 0.0070 0.3979 0.9920 −5.553
0.9975 0.0025 0.9990 0.2795 0.8946 8.508 0.0050 0.1639 0.9678 −6.242
FIAPARCH-st
0.9500 0.0500 0.9790 2.2E-06* 8.0E-09* 3.919 0.0580 0.2571 0.7958 −3.274
0.9750 0.0250 0.9870 0.0075* 7.6E-06* 4.541 0.0290 0.4293 0.9517 −4.017
0.9900 0.0100 0.9980 0.0020* 1.6E-05* 7.773 0.0080 0.5102 0.9918 −5.504
0.9950 0.0050 0.9990 0.0285* 0.0136* 8.508 0.0040 0.6422 0.9994 −6.596
0.9975 0.0025 0.9990 0.2795 0.8946 8.508 0.0040 0.3826 0.9958 −6.596
FIAPARCH- skw t
0.9500 0.0500 0.9740 0.0001* 0.0001* 3.699 0.0520 0.7731 0.8828 −3.345
0.9750 0.0250 0.9850 0.0288* 0.0008* 4.407 0.0250 1.000 0.9441 −4.134
0.9900 0.0100 0.9950 0.0786 0.5240 4.892 0.0080 0.5102 0.9918 −5.504
0.9950 0.0050 0.9980 0.1258 0.6054 7.773 0.0040 0.6422 0.9994 −6.596
0.9975 0.0025 0.9990 0.2795 0.8946 8.508 0.0040 0.3826 0.9958 −6.596
HYGARCH-nrm
0.9500 0.0500 0.9750 6.4E-05* 2.6E-05* 3.681 0.0600 0.1590 0.5178 −3.183
0.9750 0.0250 0.9830 0.0857 0.0144* 4.170 0.0380 0.0143* 0.1822 −3.598
0.9900 0.0100 0.9930 0.3136 0.0017* 4.943 0.0190 0.0109* 0.3187 −4.103
0.9950 0.0050 0.9980 0.1258 0.6054 6.343 0.0140 0.0009* 0.1109 −4.614
0.9975 0.0025 0.9990 0.2795 0.8946 8.508 0.0070 0.0197* 0.7911 −5.601
HYGARCH-st
0.9500 0.0500 0.9740 0.0001* 0.0001* 3.679 0.0650 0.0371* 0.1070 −3.134
0.9750 0.0250 0.9880 0.0034* 0.0025* 4.491 0.0330 0.1222 0.2205 −3.823
0.9900 0.0100 0.9970 0.0089* 0.0116* 6.575 0.0150 0.1389 0.4765 −4.532
0.9950 0.0050 0.9990 0.0285* 0.0136* 8.508 0.0070 0.3979 0.9920 −5.601
0.9975 0.0025 0.9990 0.2795 0.8946 8.508 0.0040 0.3826 0.9958 −6.596
HYGARCH- skw t
0.9500 0.0500 0.9700 0.0018* 0.0065* 3.589 0.0590 0.2036 0.5204 −3.165
0.9750 0.0250 0.9830 0.0860 0.0144* 4.170 0.0310 0.2411 0.5438 −3.926
0.9900 0.0100 0.9950 0.0786 0.5239 4.892 0.0100 1.000 0.9979 −5.191
0.9950 0.0050 0.9980 0.1258 0.6054 6.343 0.0050 1.000 0.9999 −6.309
0.9975 0.0025 0.9990 0.2795 0.8946 8.508 0.0040 0.3826 0.9958 −6.596
*Denotes the 5% significance level. Figures for LRuc and LRcc test statistics are probability values

Table 6: Out-of-sample VaR forecasting performance and ES values of the models for Brent
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Quantiles Short trading position Long trading position
1-f LRuc DQ ES f LRuc DQ ES

FIGARCH-nrm
0.9500 0.0500 0.9770 1.3E-05* 6.7E-07* 5.311 0.0440 0.3746 0.8157 −4.353
0.9750 0.0250 0.9840 0.0512 0.0946 5.739 0.0260 0.8405 0.9297 −4.883
0.9900 0.0100 0.9900 1.000 0.9974 6.508 0.0150 0.1389 0.2311 −5.513
0.9950 0.0050 0.9940 0.6638 0.9992 6.812 0.0090 0.1071 0.8979 −5.747
0.9975 0.0025 0.9940 0.0607 0.8962 6.812 0.0060 0.0607 0.8962 −6.250
FIGARCH-st
0.9500 0.0500 0.0470 5.4E-06* 7.2E-08* 5.426 0.0470 0.6603 0.9231 −4.246
0.9750 0.0250 0.0250 0.0288* 0.1098 5.779 0.0250 1.000 0.9230 −4.922
0.9900 0.0100 0.0120 0.5102 0.9909 6.612 0.0120 0.5377 0.3954 −5.856
0.9950 0.0050 0.0060 0.6638 0.9992 6.812 0.0060 0.6638 0.9992 −6.250
0.9975 0.0025 0.0020 0.7428 0.9999 8.554 0.0020 0.7428 0.9999 −6.468
FIGARCH- skw t
0.9500 0.0500 0.9720 0.0005* 0.0002* 5.007 0.0440 0.3746 0.8157 −4.353
0.9750 0.0250 0.9840 0.0512 0.0946 5.739 0.0230 0.6814 0.8661 −5.004
0.9900 0.0100 0.9900 1.000 0.9974 6.508 0.0120 0.5377 0.3954 −5.856
0.9950 0.0050 0.9940 0.6638 0.9992 6.812 0.0050 1.000 0.9999 −6.366
0.9975 0.0025 0.9960 0.3826 0.9956 7.352 0.0020 0.7428 0.9999 −6.468
FIAPARCH-nrm
0.9500 0.0500 0.9760 2.9E-05* 4.6E-06* 5.172 0.0450 0.4608 0.8394 −4.317
0.9750 0.0250 0.9840 0.0512 0.0946 5.739 0.0290 0.4293 0.8816 −4.660
0.9900 0.0100 0.9900 1.000 0.9974 6.508 0.0180 0.0223* 0.2652 −5.056
0.9950 0.0050 0.9930 0.3979 0.9912 6.684 0.0090 0.1071 0.8979 −5.747
0.9975 0.0025 0.9940 0.0607 0.8962 6.812 0.0080 0.0057* 0.6564 −5.750
FIAPARCH-st
0.9500 0.0500 0.9720 0.0005* 0.0002* 4.886 0.7702 0.7702 0.8387 −4.191
0.9750 0.0250 0.9840 0.0512 0.0946 5.739 0.5509 0.5509 0.9070 −4.692
0.9900 0.0100 0.9920 0.5102 0.9908 6.644 0.2306 0.2305 0.8968 −5.274
0.9950 0.0050 0.9940 0.6638 0.9999 6.812 0.6638 0.6638 0.9992 −6.250
0.9975 0.0025 0.9960 0.3826 0.9956 7.352 0.3826 0.3826 0.9956 −6.634
FIAPARCH- skw t
0.9500 0.0500 0.9660 0.0140* 0.0320* 4.531 0.0450 0.4608 0.8394 −4.317
0.9750 0.0250 0.9820 0.1359 0.2551 5.656 0.0250 1.000 0.9240 −4.777
0.9900 0.0100 0.9910 0.7465 0.9973 6.584 0.0100 1.000 0.9974 −6.004
0.9950 0.0050 0.9940 0.6638 0.9992 6.812 0.0060 0.6638 0.9992 −6.250
0.9975 0.0025 0.9960 0.3826 0.9956 7.352 0.0040 0.3826 0.9956 −6.634
HYGARCH-nrm
0.9500 0.0500 0.9710 0.0001* 0.0035* 4.738 0.0520 0.7731 0.9338 −4.060
0.9750 0.0250 0.9830 0.0857 0.1928 5.618 0.0310 0.2411 0.7615 −4.567
0.9900 0.0100 0.9890 0.7544 0.9935 6.154 0.0190 0.0109* 0.2463 −4.977
0.9950 0.0050 0.9930 0.3979 0.9912 6.684 0.0130 0.0028* 0.4332 −5.050
0.9975 0.0025 0.9940 0.0607 0.8962 6.812 0.0080 0.0057* 0.6564 −5.750
HYGARCH-st
0.9500 0.0500 0.9630 0.0484* 0.1778 4.402 0.0580 0.2571 0.6993 −3.938
0.9750 0.0250 0.9830 0.0857 0.1928 5.618 0.0340 0.0836 0.6914 −4.514
0.9900 0.0100 0.9900 1.000 0.9974 6.508 0.0170 0.0431* 0.4290 −5.032
0.9950 0.0050 0.9940 0.6638 0.9992 6.812 0.0090 0.1071 0.8979 −5.488
0.9975 0.0025 0.9960 0.3826 0.9956 7.352 0.0050 0.1639 0.9667 −6.366
HYGARCH- skw t
0.9500 0.0500 0.9610 0.0974 0.1921 4.381 0.0550 0.4749 0.9192 −3.968
0.9750 0.0250 0.9810 0.2047 0.4664 5.383 0.0300 0.3259 0.8876 −4.560
0.9900 0.0100 0.9890 0.7544 0.9935 6.154 0.0160 0.0794 0.4701 −5.125
0.9950 0.0050 0.9940 0.6638 0.9992 6.812 0.0080 0.2162 0.9613 −5.750
0.9975 0.0025 0.9940 0.0607 0.8962 6.812 0.0040 0.3826 0.9956 −5.576
*Denotes the 5% significance level. Figures for LRuc and LRcc test statistics are probability values

Table 7: Out-of-sample VaR forecasting performance and ES values of the models for gasoline
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Quantiles Short trading position Long trading position
1-f LRuc DQ ES f LRuc DQ ES

FIGARCH-nrm
0.9500 0.0500 0.9750 6.4E-05* 6.7E-05* 4.142 0.0480 0.7702 0.8648 −3.446
0.9750 0.0250 0.9840 0.0512 0.2094 4.996 0.0280 0.5509 0.5331 −3.965
0.9900 0.0100 0.9890 0.7544 0.9935 5.391 0.0140 0.2306 0.8968 −5.078
0.9950 0.0050 0.9930 0.3979 0.9912 5.695 0.0100 0.0486* 0.8012 −5.189
0.9975 0.0025 0.9940 0.0607 0.8962 5.929 0.0060 0.0607 0.8962 −6.599
FIGARCH-st
0.9500 0.0500 0.9740 0.0001* 0.0002* 4.059 0.0490 0.8843 0.9225 −3.413
0.9750 0.0250 0.9840 0.0512 0.2094 4.996 0.0270 0.6892 0.4885 −4.013
0.9900 0.0100 0.9920 0.5102 0.9908 5.908 0.0120 0.5377 0.9807 −5.484
0.9950 0.0050 0.9940 0.6638 0.9992 5.929 0.0060 0.6638 0.9992 −6.599
0.9975 0.0025 0.9960 0.3826 0.9956 6.424 0.0060 0.3826 0.8962 −6.599
FIGARCH- skw t
0.9500 0.0500 0.9750 6.4E-05* 6.7E-05* 4.142 0.0490 0.8843 0.9225 −3.413
0.9750 0.0250 0.9850 0.0288* 0.1078 5.173 0.0270 0.6892 0.4885 −4.013
0.9900 0.0100 0.9920 0.5102 0.9908 5.908 0.0130 0.3621 0.9509 −5.279
0.9950 0.0050 0.9950 1.000 0.9999 6.289 0.0060 0.6638 0.9992 −6.599
0.9975 0.0025 0.9960 0.3826 0.9956 6.424 0.0060 0.0607 0.8962 −6.599
FIAPARCH-nrm
0.9500 0.0500 0.9780 5.4E-06* 6.5E-07* 4.347 0.0440 0.3746 0.8958 −3.574
0.9750 0.0250 0.9850 0.0288* 0.1078 5.173 0.0270 0.6892 0.4885 −4.076
0.9900 0.0100 0.9900 1.000 0.9974 5.668 0.0140 0.2306 0.8968 −5.078
0.9950 0.0050 0.9920 0.2163 0.9613 5.908 0.0070 0.3980 0.9912 −6.173
0.9975 0.0025 0.9950 0.1639 0.9667 6.289 0.0060 0.0607 0.8962 −6.599
FIAPARCH-st
0.9500 0.0500 0.9780 5.4E-06* 6.5E-07* 4.347 0.0410 0.1783 0.5986 −3.721
0.9750 0.0250 0.9850 0.0288* 0.1078 5.173 0.0250 1.000 0.8265 −4.174
0.9900 0.0100 0.9910 0.7465 0.9973 5.901 0.0080 0.5102 0.9908 −6.829
0.9950 0.0050 0.9950 1.000 0.9999 6.289 0.0060 0.6638 0.9992 −6.599
0.9975 0.0025 0.9970 0.7589 0.9999 7.556 0.0060 0.0607 0.8962 −6.599
FIAPARCH- skw t
0.9500 0.0500 0.9780 5.4E-06* 6.5E-07* 4.347 0.0430 0.2985 0.6728 −3.641
0.9750 0.0250 0.9850 0.0288* 0.1078 5.173 0.0250 1.000 0.8265 −4.174
0.9900 0.0100 0.9920 0.5102 0.9908 5.908 0.0090 0.7465 0.9973 −6.422
0.9950 0.0050 0.9950 1.000 0.9999 6.289 0.0060 0.6638 0.9992 −6.599
0.9975 0.0025 0.9970 0.7589 0.9999 7.556 0.0060 0.0607 0.8962 −6.599
HYGARCH-nrm
0.9500 0.0500 0.9780 5.4E-06* 6.5E-07* 4.347 0.0410 0.1783 0.5986 −3.684
0.9750 0.0250 0.9850 0.0288* 0.1078 5.173 0.0260 0.8405 0.8006 −4.046
0.9900 0.0100 0.9910 0.7465 0.9973 5.901 0.0130 0.3621 0.9509 −5.253
0.9950 0.0050 0.9930 0.3979 0.9912 5.695 0.0070 0.3979 0.9912 −6.173
0.9975 0.0025 0.9950 0.1639 0.9667 6.289 0.0060 0.0607 0.8962 −6.599
HYGARCH-st
0.9500 0.0500 0.9780 5.4E-06* 6.5E-07* 4.347 0.0420 0.2332 0.6429 −3.649
0.9750 0.0250 0.9850 0.0288* 0.1078 5.173 0.0240 0.8384 0.8375 −4.167
0.9900 0.0100 0.9920 0.5102 0.9908 5.908 0.0090 0.7465 0.9973 −6.359
0.9950 0.0050 0.9950 1.000 0.9999 6.289 0.0060 0.6638 0.9992 −6.599
0.9975 0.0025 0.9960 0.3826 0.9956 6.424 0.0060 0.0607 0.8962 −6.599
HYGARCH- skw t
0.9500 0.0500 0.9790 2.2E-06* 8.7E-08* 4.414 0.0420 0.2332 0.6429 −3.649
0.9750 0.0250 0.9850 0.0288* 0.1078 5.173 0.0250 1.000 0.8265 −4.109
0.9900 0.0100 0.9920 0.5102 0.9908 5.908 0.0100 1.000 0.9974 −6.039
0.9950 0.0050 0.9950 1.000 0.9999 6.289 0.0060 0.6638 0.9992 −6.599
0.9975 0.0025 0.9960 0.3826 0.9956 6.424 0.0060 0.0607 0.8962 −6.599
*Denotes the 5% significance level. Figures for LRuc and LRcc test statistics are probability values

Table 8: Out-of-sample VaR forecasting performance and ES values of the models for heating oil
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Quantiles Short trading position Long trading position
1-f LRuc DQ ES f LRuc DQ ES

FIGARCH-nrm
0.9500 0.0500 0.9607 0.1077 0.2204 4.571 0.0604 0.1439 0.4003 −5.352
0.9750 0.0250 0.9768 0.7073 0.8462 5.258 0.0373 0.0209* 0.3344 −6.154
0.9900 0.0100 0.9889 0.7373 0.9931 6.001 0.0211 0.0021* 0.0040* −7.524
0.9950 0.0050 0.9929 0.3886 0.9905 6.709 0.0130 0.0026* 2.5E-05* −7.744
0.9975 0.0025 0.9969 0.7502 0.9999 5.930 0.0091 0.0014* 0.0001* −8.055
FIGARCH-st
0.9500 0.0500 0.9577 0.2530 0.4996 4.730 0.0674 0.0162* 0.0800 −5.183
0.9750 0.0250 0.9848 0.0313* 0.1188 5.734 0.0342 0.0772 0.2728 −6.425
0.9900 0.0100 0.9949 0.0820 0.5416 7.960 0.0080 0.5241 0.0230* −7.793
0.9950 0.0050 0.9989 0.0294* 0.0152* 6.296 0.0060 0.6521 0.9991 −7.445
0.9975 0.0025 1.000 0.0000* 0.0000* - 0.0010 0.2838 0.8998 −11.23
FIGARCH- skw t
0.9500 0.0500 0.9577 0.2530 0.4996 4.730 0.0674 0.0162* 0.0800 −5.183
0.9750 0.0250 0.9848 0.0313* 0.1188 5.734 0.0352 0.0512 0.2906 −6.365
0.9900 0.0100 0.9950 0.0821 0.5416 7.960 0.0081 0.5241 0.0230* −7.793
0.9950 0.0050 0.9989 0.0295* 0.0152* 6.296 0.0060 0.6521 0.9991 −7.445
0.9975 0.0025 1.000 0.0000* 0.0000* - 0.0010 0.2838 0.8999 −11.23
FIAPARCH-nrm
0.9500 0.0500 0.9587 0.1946 0.2938 4.811 0.0604 0.1439 0.3950 −5.375
0.9750 0.0250 0.9778 0.5583 0.8099 5.360 0.0433 0.0008* 0.0078* −6.185
0.9900 0.0100 0.9869 0.3499 0.9479 6.038 0.0211 0.0021* 0.0041* −7.677
0.9950 0.0050 0.9919 0.2099 0.9594 6.651 0.0171 2.3E-05* 0.0005* −8.403
0.9975 0.0025 0.9949 0.1601 0.9656 7.960 0.0111 7.1E-05* 3.9E-08* −8.389
FIAPARCH-st
0.9500 0.0500 0.9546 0.4918 0.2818 4.712 0.0695 0.0076* 0.0260* −5.172
0.9750 0.0250 0.9818 0.1449 0.4933 5.925 0.0352 0.0512 0.2928 −6.758
0.9900 0.0100 0.9949 0.0820 0.5416 7.960 0.0121 0.5226 4.9E-06* −8.462
0.9950 0.0050 0.9989 0.0295* 0.0152* 6.296 0.0070 0.3886 0.0032* −7.678
0.9975 0.0025 1.000 0.0000* 0.0000* - 0.0020 0.7509 0.9999 −9.073
FIAPARCH- skw t
0.9500 0.0500 0.9547 0.4918 0.2818 4.712 0.0705 0.0051* 0.0270* −5.157
0.9750 0.0250 0.9828 0.0920 0.3557 6.109 0.0363 0.0331* 0.2936 −6.643
0.9900 0.0100 0.9949 0.0821 0.5446 7.960 0.0121 0.5226 4.9E-06* −8.462
0.9950 0.0050 0.9999 0.0294* 0.0152* 6.296 0.0070 0.3886 0.0031* −7.678
0.9975 0.0025 1.000 0.0000* 0.0000* - 0.0020 0.7509 0.9999 −9.072
HYGARCH-nrm
0.9500 0.0500 0.9597 0.1464 0.2599 4.922 0.0614 0.1100 0.4688 −5.372
0.9750 0.0250 0.9778 0.5583 0.8099 5.360 0.0382 0.0129* 0.2950 −6.570
0.9900 0.0100 0.9879 0.5226 0.9794 5.953 0.0201 0.0048* 0.0025* −7.921
0.9950 0.0050 0.9929 0.3886 0.9905 7.178 0.0161 8.3E-05* 0.0002* −8.594
0.9975 0.0025 0.9949 0.1601 0.9656 7.960 0.0091 0.0014* 0.0001* −8.055
HYGARCH-st
0.9500 0.0500 0.9547 0.4912 0.6354 4.732 0.0695 0.0076* 0.0384* −5.156
0.9750 0.0250 0.9849 0.0313* 0.1188 5.734 0.0373 0.0209* 0.2986 −6.687
0.9900 0.0100 0.9949 0.0820 0.5416 7.960 0.0091 0.7631 0.0883 −7.956
0.9950 0.0050 0.9990 0.0295* 0.0152* 6.296 0.0060 0.6521 0.9991 −7.445
0.9975 0.0025 1.000 0.0000* 0.0000* - 0.0010 0.2838 0.8999 −11.23
HYGARCH- skw t
0.9500 0.0500 0.9556 0.4020 0.5448 4.738 0.0705 0.0051* 0.0396* −5.125
0.9750 0.0250 0.9849 0.0313* 0.1188 5.734 0.0383 0.0128* 0.2948 −6.581
0.9900 0.0100 0.9949 0.0820 0.5416 7.960 0.0091 0.7631 0.0883 −7.956
0.9950 0.0050 0.9989 0.0295* 0.0152* 6.296 0.0060 0.6521 0.9990 −7.445
0.9975 0.0025 1.000 0.0000* 0.0000* - 0.0010 0.2838 0.8999 −11.23
The “-” symbol means that the relevant model produced no exceptions. However, it also implies that the relevant model’s VaR performance is inadequate. Figures for LRuc and LRcc test 
statistics are probability values

Table 9: Out-of-sample VaR forecasting performance and ES values of the models for propane
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The main findings are as follows. First, the results indicate that 
the FIAPARCH model with the skewed Student’s t distribution 
is not the most appropriate model. Instead, the results show 
that accurately measuring upside market risk for the relevant 
energy commodities is best modelled by HYGARCH under the 
assumption of normal distribution, whereas downside market 
risk for the same commodities is best modelled by FIGARCH 
under the assumption of Student’s t distribution. When analysing 
market risk, both traders taking short positions and purchasers of 
energy commodities should prefer the HYGARCH model under 
the assumption of normal distribution, while traders taking long 
positions and producers of energy commodities should consider the 
FIGARCH model under the assumption of Student’s t distribution. 
Second, most relevant studies carry out downside risk analysis 
(e.g., Ane, 2006; Angelidis et al., 2004; Cifter, 2011; Degiannakis 
et al., 2013; Escanciano and Pei, 2012; Orhan and Köksal, 2012; So 
and Yu, 2006). In other words, papers have typically only examine 
the performance of alternative models for long trading positions, 
although such models are then proposed for use in both downside 
and upside VaR analysis. However, this study clearly shows that 
model performance can change significantly across long compared 
with short trading positions. Therefore, downside and upside risk 
must be considered separately for the most accurate results. Third, 
the results here reveal that the standard normal distribution is an 
appropriate assumption for analysing upside market risk, whereas 
both the Student’s t and the skewed Student’s t distributions should 
be used for measuring downside market risk. Fourth, the findings 
indicate that compared with their ability to model upside market 
risk, the models are more successful at measuring downside market 
risk. In this regard, the findings presented in this study make 
important contributions to the practices of market risk analysis, 
variance forecasting, option pricing, asset allocations and hedging 
decisions concerning energy commodities.
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