
International Review of Management and Marketing | Vol 6 • Special Issue (S8) • 2016 27

International Review of Management and
Marketing

ISSN: 2146-4405

available at http: www.econjournals.com

International Review of Management and Marketing, 2016, 6(S8) 27-32.

Special Issue for "International Conference on Applied Science and Technology (ICAST) 2016, Malaysia"

A Large Data Exchange Method for Multi-agent in Java Agent
Development Framework

Wathiq Laftah Al-Yaseen1*, Zulaiha Ali Othman2, Mohd Zakree Ahmad Nazri3

1Al-Furat Al-Awsat Technical University, Data Mining and Optimization Research Group, Centre for Artificial Intelligence
Technology, Iraq, 2School of Computer Science, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia,
43600 Bandar Baru Bangi, Malaysia, 3School of Computer Science, Faculty of Information Science and Technology, Universiti
Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Malaysia. *Email: wathiqpro@gmail.com

ABSTRACT

One of the business intelligent solutions that are currently in use is the multi-agent system (MAS). Communication is one of the most important
elements in MAS, especially for exchanging large low level data between distributed agents (physically). The agent communication language in Java
Agent Development framework has been offered as a secure method for sending data, whereby the data is defined as an object. However, the object
cannot be used to send data to another agent in a different machine. Therefore, the aim of this paper was to propose a method for the exchange of large
low level data as an object by creating a proxy agent known as a delivery agent, which temporarily imitates the receiver agent. The results showed that
the proposed method is able to send large-sized data. The experiments were conducted using 16 datasets ranging from 100,000 to 7 million instances.
However, for the proposed method, the RAM and the CPU machine had to be slightly increased for the receiver agent, but the latency time was not
significantly different compared to the use of the java socket method (non-agent and less secure). With such results, it was concluded that the proposed
method can be used to securely send large data between agents.

Keywords: Data Exchange, Multi-agent, Agent Communication, Low Level Data, Java Agent Development Framework
JEL Classifications: C61, C63, C82, C88

1. INTRODUCTION

The efficient management of information exchange has become
a challenging issue in most areas of computer science research.
A multi-agent system (MAS) is one of the areas that suffer from
this problem (Noroozi, 2009). The MAS is comprised of a number
of independent software modules named agents. These agents are
used to construct a flexible and extensible framework for large
heterogeneous and complex distributed software applications. One
of the significant characteristics possessed by the MAS is social
ability. Social ability means that each agent can co-operate and
communicate with other agents, while supporting data exchange,
information exchange and negotiation (McArthur and Davidson,
2004). A common language is required in order to achieve
efficient communication between agents. Much work has gone
into developing an agent communication language (ACL) that is
declarative, syntactically simple and readable by people.

The Java Agent DEvelopment framework (JADE) framework is
one of the environments used to implement agents in runtime.
JADE uses FIPA-ACL language for communication between
agents. This language supports the exchange of high level data
(messages and small data) between agents located in different
machines (logical environment) by using a serialized object
as well as the exchange of low level data between agents
located in the same machine (physical environment) by using
an object. However, the FIPA-ACL does not have a method
for the exchange of large low level data between agents
located in different machines. Therefore, this paper proposed
a method for a MAS communication in JADE with the ability
to exchange large low level data between agents distributed
in different machines. This method creates a proxy agent,
temporarily known as a delivery agent, to transfer data as an
object to a receiver agent. The experimental results proved that
the proposed method can result in the exchange of large data

Al-Yaseen, et al.: A Large Data Exchange Method for Multi-agent in JADE

International Review of Management and Marketing | Vol 6 • Special Issue (S8) • 201628

between agents located in different machines with a secure
connection.

The remainder of this paper is organized as follows. Section 2
provides a brief review of the related work on the communication
approaches between agents. The proposed method is described in
section 3, while section 4 presents experimental results, in order to
demonstrate the proposed method performance. The concluding
remarks are given in Section 5.

2. RELATED WORKS

2.1. ACL
There are several software environments concerned to develop
the MASs, for example AgentBuilder, FIPA-OS, Retsina, Zeus
(Lee et al., 1998) and JADE.

JADE is an open source java software aims to development
of distributed multi-agent applications based on a peer-to-
peer communication architecture in compliance with the FIPA
specifications (Bellifemine, 2005). It is providing a set of services
and graphical tools for debugging and testing of agents. A JADE
comprises of agent containers that can be distributed over the
network and implemented within a java virtual machine (JVM).
Each agent lives in a container, and the collection of containers
makes up a platform. There is a special container known as
main-container that represents the bootstrap of platform as well
as all the other containers of platform must be joined with the
main-container by registering with it (Bellifemine et al., 2005;
Kumar and Kumar, 2014). Moreover, the security policy of JADE
provides connection authentication for exchange data between
agents, in addition it has a high security through encryption all
the interoperation between agents like use remote procedure call
for message encryption (Nguyen et al., 2002). JADE supports
exchange data between agents with high restrictions on this
exchange. One of these restrictions, it can send only small data with
the ACL message as Java serialization object to an agent located
on other machine. Moreover, the method of sending a serialization
object inside ACL message is very slow. Another restriction, JADE
provides send object-data, but it needs to proxy (agent controller)
of receiver agent on the other machine so can send an object, this
is impossible. These restrictions make JADE difficult and poor to
exchange a large low level data between agents.

2.2. JADE Environment
A few researchers in the field of MASs, such as (Noroozi, 2009;
Garro et al., 2002; Jang et al., 2004; Berna-Koes et al., 2004),
have tried to improve the communication and exchange of large
data between agents. Noroozi (2009) and Berna-Koes et al. (2004)
used extra channels (backchannels) to exchange low level data
between agents. The use of backchannels is necessary to establish
a TCP connection by the initiator that is included in the server
agent (sender). The server opens a passive line on a port and
sends a permission request, in the form of an ACL message, with
a reference number (unique number of the particular specified
channel) to the client agent (receiver) in order to connect with
this specified port. If accepted, the server agent will send the low
level data over this channel to the client agent. Furthermore, the

content of the message should be fixed and agreed to between the
agents. This method was designed for a MAS that uses KQML as
the language of communication.

Garro and Palopoli (2003) proposed an XML MAS for
e-learning and skills management systems. E-learning and
skills management systems are concerned with enterprise
knowledge management. These systems are needed for the
exchange, reuse and sharing of meta-knowledge between
members of the scientific community operating in the field
of e-learning. Consequently, the authors used XML for
representing and exchanging knowledge via the internet as
it has the representation capabilities of HTML and the data
management features of the DBMS. They exploited these
capabilities of XML, and made them suitable for use by agents
for the exchange of information and knowledge in e-learning
and skills management systems.

Jang et al. (2004) presented an idea to address the problem of
message passing between agents located in different platforms
of actor architecture (AA), which used an object-based
message to exchange data. They extended the behavior of the
message manager that is responsible for handling the passing
of messages between agents in the AA by adding a new service
known as forwarding. The scenario of a forwarding service is:
The message manager of the sender agent delivers the message
to the current AA platform of the mobile agent (receiver agent).
Then, the AA platform delivers the message to the message
manager of this platform where the mobile agent currently
resides, and finally, that message manager delivers the message
to the mobile agent. Moreover, this architecture needs other
components, such as the transport manager, transport sender,
transport receiver and delayed message manager, in order to
achieve the process of message passing between the agents.
Thus, all these components will increase the consumption of
system resources.

3. PROPOSED A LARGE DATA EXCHANGE
METHOD FOR MAS

There are three methods in the JADE framework for the
exchange of data between agents. The first is to exchange data as
a serialized object inside the ACL message. To send the serialized
object, the setContentObject is used to embed the serialized data
inside the ACL message, while the getContentObject is used to
receive the serialized object sent from the other agent. In this
method, the size of the data should be small as well since the
data has to be saved as a serialized object. The drawback of
this method is that it is very slow, and thus, it will take a long
time to send the data. The second method is to send the data by
creating a new agent and then embedding the data inside that
new agent. The instruction to send data is createNewAgent,
while the instruction to receive the data is getArguments. The
third method is to send the data as objects. This method needs
a proxy (agent controller) of the receiver agent in order to be
able to send the data. There are two cases in this method: If the
sender and receiver agents belong to the same platform (intra-
platform), then the process of sending the data is very simple

Al-Yaseen, et al.: A Large Data Exchange Method for Multi-agent in JADE

International Review of Management and Marketing | Vol 6 • Special Issue (S8) • 2016 29

because the proxy of the receiver agent can easily get it by using
getAgent. The data object can be sent by using putO2AObject
and received by the receiver agent by using getO2AObject. In
the case where the sender and receiver agents are in different
platforms (inter-platform), then it would be impossible to
connect the sender agent to the proxy of the receiver agent.
Therefore, this method is not appropriate for the exchange of
data between agents in different machines.

The proposed communication method was aimed at improving
the data exchange process between agents and making the
communication more efficient in MAS. The proposed method
uses three types of agents, namely sender agent, receiver agent
and delivery agent. The scenario of the proposed communication
method for MAS in JADE between two machines (A and B) is
as follows:
1.	 Create a sender agent in the main container of the platform

in machine A
2.	 Create a receiver agent in the main container of the platform

in machine B
3.	 Prepare the required data for sending by the sender agent
4.	 Create a new delivery agent by the sender agent in a new

container (Container-1) in the platform of machine B with
the data embedded as an object

5.	 Send a request message from the delivery agent to the receiver
agent about the initial receipt of the data

6.	 Move the receiver agent to container-1 of the delivery agent
7.	 Send a message from the receiver agent to the delivery agent

informing that the former is ready to receive the data
8.	 Data is sent by the delivery agent and is received by the

receiver agent
9.	 Move the receiver agent to the original main container of the

platform in machine B
10.	 Delete the delivery agent and container-1.

3.1. Sender Agent
This agent is a static agent. It reads and puts the required data
into an object in preparation for sending it to another agent. After
that, it delivers the object directly to the receiver agent when the
latter is found in the same machine. In contrast, when the receiver
agent is located in another machine, then the sender agent creates
a new agent (delivery agent) in the target machine and embeds
the required object inside this new agent in order to send it with
the delivery agent to the receiver agent. The java pseudo code of
the sender agent is shown in Figure 1.

3.2. Delivery Agent
The delivery agent is responsible for transferring data from the
sender agent to the receiver agent. This agent is created by the
sender agent at the target machine where the data should be
received. This agent can be deleted after completing the data
transfer, or may remain for more transfers in the future between
the sender agent and the receiver agent. Since JADE is operating in
JVM, the delivery agent is created logically on the target machine,
but physically the delivery agent is created in the same machine as
the mother agent (sender agent). Subsequently, the delivery agent
will use the resources of the sender agent machine like the CPU,
memory, etc. The java pseudo code of it is shown in Figure 2.

3.3. Receiver Agent
The receiver agent is responsible for receiving the data from the
sender agent. This agent resides in the target machine and is ready to
receive the data. This type of agent is reactive in that when it receives
a message from the delivery agent, it moves to the same container
of the delivery agent in order to get the data, and then returns to the
previous container. The pseudo code is shown in Figure 3.

The AUML (sequence diagram) of proposed communication
method for MAS is shown in Figure 4. This diagram shows the
process of transfer data from sender agent (machine A) to receiver
agent (machine B) by using the mediator entity that is delivery
agent.

From the AUML, we saw delivery agent had been created in a new
container on the target machine, so that we can ask question; why
sender agent did not create delivery agent in the main container of
target machine directly? Because the JADE framework deal with
platforms on all machines as virtual platforms contain on virtual
containers. Consequently, JADE cannot create a new agent from
machine inside container already found in platform of another
machine. For example, the sender agent in machine (A) cannot
create delivery agent in the main-container of machine (B), where
when anybody try to implement the above process then the JADE
will create delivery agent in new container (e.g., Container-1) in
platform of machine (B).

4. EXPERIMENTAL RESULTS

To evaluate the proposed communication method for the MAS,
two approaches were considered for comparison: In the “java

Load data;//multimedia, control, etc.
Create profile P with parameters “Machine B”, “Container‑1”;

 Create a new container of profile p;
Create a new agent (“Delivery Agent”, data) in Container‑1 of
platform in machine B.

Figure 1: Pseudo code of sender agent

Data=getArguments();
Send request message to the Receiver Agent in order to initialize the
receiving of data;
Add cyclic behaviour until the Receiver Agent ends with readiness
to receive data;
Proxy=getAgent (Receiver Agent);
Proxy.putO2AObject (data);
Send message to Receiver Agent to get data.

Figure 2: Pseudo code of delivery agent

Add cyclic behaviour until a message is received from the Delivery
Agent to initialize;
Move to container of Delivery Agent;
Add cyclic behaviour until a message is received from the Delivery
Agent to get data;
Data=getO2AObjcet();
Move to the previous container.

Figure 3: Pseudo code of receiver agent

Al-Yaseen, et al.: A Large Data Exchange Method for Multi-agent in JADE

International Review of Management and Marketing | Vol 6 • Special Issue (S8) • 201630

socket” approach to the exchange of data between two machines,
a java socket class was used to determine one machine as the
server and the other as a client; while in the “agent” approach,
three agents, as proposed in section 3, were used for the exchange
of data between two machines. This approach was implemented
by using the JADE 4.3.3 environment. The specifications of the
two machines used in experiments were: The sender machine had
a Core i5 2.60 GHz CPU and a 12 GB RAM, while the receiver
machine had a Core i7 3.40 GHz CPU and 4 GB RAM. In addition,
the Windows 8.1 Single Language was used with each of the
machines. The benchmark KDD Cup 1999 was used to generate
16 datasets having a different number of instances (size), as shown
in Table 1. These datasets were used to evaluate the performance
of the proposed communication method and to compare it with
the java socket approach.

The utilization of the system resources, as well as the time,
were used as evaluation measurements for comparing the
performances, where the Sigar class in java was used to
compute the load on the system resources like the CPU and
RAM. In addition, the currentTimeMillis java function was
used to obtain the time interval (latency) in milliseconds before
and after the sending of the whole dataset between machines.
Table 2 presents the averages of exchange each dataset 10 times
between machines. At each time interval, the peak value of the
utilization of the CPU and RAM was taken for one second only.
Accordingly, the mean and standard deviation were computed
for each outcome. Table 2 shows the utilizations of CPU were
close between approaches on the sender machine. Moreover,
Table 3 shows the mean and standard deviation with the best
and worst cases of latency time for 10 times of exchange each
dataset. Figure 5 compares the utilization of the CPU between
the Java socket approach and the agent approach. It shows
that the utilizations of the CPU were close between the two
approaches.

However, the java socket approach with the sender machine was
better than the proposed agent approach in terms of memory
usage because the agent approach used the memory of the sender
machine twice to store the same dataset at the same time, once
when opening the dataset by the sender agent to prepare it for
sending, and once when sending the dataset to the delivery
agent that used the same memory of the sender machine. Figure 6
shows the comparison of the approaches for memory usage.

On the other hand, the utilization of the CPU of the receiving
machine in the java socket approach was much better than that
of the agent approach because the CPU of the receiving machine
was used to move the receiver agent to another container in order
to collect the dataset. The observed differences between both
approaches are shown in Figure 7.

Moreover, the memory usage of the receiver machine by
the java socket approach was also much better than that of

Figure 4: AUML sequence diagram of proposed communication method for multi-agent system

Table 1: Characteristics of testing datasets
Dataset #Instance Size (byte)
DS1 100,000 15,373,260
DS2 200,000 30,746,520
DS3 300,000 46,119,780
DS4 400,000 61,494,903
DS5 500,000 76,866,300
DS6 600,000 92,239,560
DS7 700000 107,612,820
DS8 800,000 122,986,080
DS9 900,000 138,359,340
DS10 1,000,000 153,732,600
DS11 2,000,000 307,465,200
DS12 3,000,000 461,197,800
DS13 4,000,000 614,930,400
DS14 5,000,000 768,663,000
DS15 6,000,000 922,395,600
DS16 7,000,000 1,076,128,200

Al-Yaseen, et al.: A Large Data Exchange Method for Multi-agent in JADE

International Review of Management and Marketing | Vol 6 • Special Issue (S8) • 2016 31

the agent approach. Figure 8 compares the memory usage
between the java socket approach and the agent approach in
the receiver machine. With regard to the latency of sending
the dataset between the machines, it was observed that the

best and worst time intervals for the exchange of data between
the two approaches were very close, and this was emphasized
by the t-tests that were conducted, where the t-test of the best
case was 0.030463128, while the t-test of the worst case was
0.162722326. Figure 9 compares the best and worst latency
times between the approaches.

It was observed that the best cases of latency for datasets with sizes of
<4,000,000 instances were very close, while the latency times started
to differ after that. In the worst case, the latency time of the agent
approach was sometimes better than that of the java socket approach.
In general, the differences in latency between both approaches were
not significant, where the t-test for them was 0.027366138.

Based on the above results, the proposed communication method
was regarded as having given a good performance in the exchange
of data between JADE agents according to the important feature
provided by JADE with regard to high security that is not provided
by java socket.

Table 2: Comparison of the consumption system resources between proposed method and java socket
Dataset Sender Receiver

CPU RAM CPU RAM
Socket Agent Socket Agent Socket Agent Socket Agent

DS1 18±4.08 20.3±2.58 0.3±0.48 1±0 8.9±1.79 6.1±0.88 1.5±0.71 2.9±0.32
DS2 20±6.62 25.7±8.12 0.9±0.32 2±0 10±2.98 10.4±1.26 2.8±0.63 10±0
DS3 33±7.83 25±3.97 1.7±0.48 3±0 11.3±0.82 19.5±5.36 3.9±0.57 12.8±1.32
DS4 34.6±1.9 30.4±6.11 1.9±0.32 3.7±0.48 18.4±28.33 20.4±0.7 5.2±0.42 13.4±0.52
DS5 32.1±6.01 33.7±2.26 1.2±0.42 7±0 14.9±1.73 23±4 7.6±0.52 16±0
DS6 41.3±5.87 35.1±4.75 2.8±0.42 7±0 14.6±4.72 25.5±3.6 8.4±0.52 17±0
DS7 42.3±5.33 36.8±3.55 3±0 6.1±0.32 14.1±1.29 23.6±4.22 8.8±1.03 18.8±0.63
DS8 44.7±8.78 36.6±5.25 3.8±0.42 7±0 15.1±2.69 25±5.85 11±1.33 20.6±1.17
DS9 49.6±9.05 37.3±2.41 3.9±0.32 7±0 17.4±2.12 32.5±5.3 12.6±0.84 20.3±0.95
DS10 53.4±3.17 37.3±3.77 4±0 10±0 18±4.59 30.8±5.01 13.1±0.88 20.8±0.63
DS11 62.6±3.27 70.2±6.88 7.9±0.32 19.6±0.52 27.5±3.06 53.9±7.2 21.2±5.31 31±0
DS12 72.6±8.6 83±4.9 13.9±0.32 20.4±2.67 39.6±6.24 52.9±19.02 40.4±0.7 42.1±14.81
DS13 74.6±10.18 83.1±5.82 13.4±0.52 33±0 47.5±6.98 63.2±1.69 47±7.32 62.9±1.29
DS14 77.9±12.73 91.4±3.17 15.3±0.67 35.2±3.29 46.8±10.45 65.8±9.2 48.3±0.48 64.4±2.95
DS15 92.4±2.76 92.5±2.55 24.9±3.84 39.4±4.06 50.7±8.59 66.1±1.91 54.1±0.74 65.8±0.63
DS16 93.1±2.38 91.6±2.27 26±0 47.5±2.76 60 70.4±9.4 54±0.67 66±0

Table 3: Comparison of latency time (s) between proposed method and java socket
Dataset Latency (±σ) Best case Worst case

Socket Agent Socket Agent Socket Agent
DS1 1.398±0.011 2.114±0.244 1.383 1.718 1.420 2.317
DS2 2.79±0.033 3.386±0.198 2.738 3.224 2.841 3.709
DS3 4.13±0.02 5.015±0.191 4.104 4.715 4.157 5.250
DS4 5.44±0.025 6.448±0.205 5.396 6.164 5.475 6.691
DS5 6.898±0.02 8.045±0.238 6.858 7.901 6.924 8.536
DS6 8.296±0.052 9.568±0.297 8.218 9.375 8.402 9.929
DS7 9.614±0.076 10.838±0.447 9.576 10.809 9.829 11.387
DS8 11.154±0.033 12.489±0.329 11.093 12.028 11.196 13.009
DS9 12.533±0.121 13.978±0.366 12.315 13.813 12.754 14.380
DS10 13.905±0.129 15.376±0.281 13.780 15.310 14.155 15.920
DS11 28.922±1.658 32.322±0.212 28.132 31.962 33.610 32.525
DS12 41.066±0.081 47.007±0.649 40.966 46.630 41.250 48.237
DS13 54.437±0.171 66.14±0.64 54.268 65.426 54.750 65.997
DS14 67.68±0.081 145.883±19.706 67.588 119.207 67.872 160.665
DS15 135.129±20.079 163.452±5.106 106.830 151.917 196.293 170.878
DS16 173.437±38.951 247.578±17.546 122.602 224.103 271.752 271.994
P value 0.027366138 0.030463128 0.162722326

Figure 5: Utilization of CPU of sender machine

Al-Yaseen, et al.: A Large Data Exchange Method for Multi-agent in JADE

International Review of Management and Marketing | Vol 6 • Special Issue (S8) • 201632

5. CONCLUSION AND FUTURE WORK

The majority of the communication languages based on FIPA
are able to send high level data between agents, but there are
no formal methods or scenarios for the sending of low level
data (e.g., videos, audios, etc.) between agents in MASs. This
paper proposed an efficient communication method based
on JADE for the exchange of large low level data between
agents in different environments. The results proved that the
proposed method has good performance with high security for
the exchange of data in MASs compared to a popular approach
for the exchange of data in java that uses a socket class (non-
agent and less secure).

In the future work, we will attempt to improve the communication
between agents to become more faster by suggesting a java
secure method to exchange data between agents with high
security.

REFERENCES

AgentBuilder, An integrated software toolkit to develop intelligent
software agents and agent-based applications. Available from: http://
www.agentbuilder.com/.

Bellifemine, F., Bergenti, F., Caire, G. (2005), JADE - A Java agent
development framework. Multi-Agent Programming. US: Springer.
p125-147.

Berna-Koes, M., Illah, N., Sycara, K. (2004), Communication
efficiency in multi-agent systems. Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004 IEEE International Conference on.
Vol. 3. IEEE.

FIPA-OS, A component-based toolkit enabling rapid development of FIPA
compliant agents. Available from: http://www.fipa-os.sourceforge.
net/index.htm.

Garro, A., Palopoli, L. (2002), An xml multi-agent system for e-learning
and skill management. Net. Object Days: International Conference
on Object-Oriented and Internet-Based Technologies, Concepts,
and Applications for a Networked World. Berlin, Heidelberg:
Springer.

JADE. An open source platform for peer-to-peer agent based applications.
Available from: http://www.jade.tilab.com/.

Jang, M.W., Amr, A., Gul, A. (2004), Efficient agent communication
in multi-agent systems. International Workshop on Software
Engineering for Large-Scale Multi-Agent Systems. Berlin,
Heidelberg: Springer.

Kumar, S., Kumar, U. (2014), Java agent development framework.
International Journal of Research, 1(9), 1022-1025.

McArthur, S.D.J., Davidson, E.M. (2004), Multi-agent systems for
diagnostic and condition monitoring applications. Power Engineering
Society General Meeting, 2004. IEEE.

Nguyen, G., Dang, T.T., Hluchy, L., Laclavik, M., Balogh, Z., Budinska, I.
(2002), Agent Platform Evaluation and Comparison. Rapport
Technique. Bratislava, Slovakia: Institute of Informatics.

Noroozi, A. (2009), A Novel Model for Multi-agent Systems to
Improve Communication Efficiency. Computer Engineering
and Technology, 2009. ICCET’09. International Conference on.
Vol. 2. IEEE.

Retsina, R. Available from: https://www.cs.cmu.edu/~softagents/
retsina_agent_arch.html.

Figure 6: Memory usage of sender machine

Figure 7: Utilization of CPU of receiver machine

Figure 8: Memory usage of receiver machine

Figure 9: Latency time to send a dataset between machines

